o
AtmeL SAMA4E Series

Atmel | SMART ARM-based Flash MCU

DATASHEET

Description

The Atmel® | SMART SAMAE series of Flash microcontrollers is based on the
high-performance 32-bit ARM® Cortex®-M4 RISC processor and includes a
floating point unit (FPU). It operates at a maximum speed of 120 MHz and
features up to 1024 Kbytes of Flash, 2 Kbytes of cache memory and up to
128 Kbytes of SRAM.

The SAMAE offers a rich set of advanced connectivity peripherals including
10/100 Mbps Ethernet MAC supporting IEEE 1588 and dual CAN. With a single-
precision FPU, advanced analog features, as well as a full set of timing and
control functions, the SAM4E is the ideal solution for industrial automation, home
and building control, machine-to-machine communications, automotive
aftermarket and energy management applications.

The peripheral set includes a full-speed USB device port with embedded
transceiver, a 10/100 Mbps Ethernet MAC supporting IEEE 1588, a high-speed
MCI for SDIO/SD/MMC, an external bus interface featuring a static memory
controller providing connection to SRAM, PSRAM, NOR Flash, LCD Module and
NAND Flash, a parallel I/O capture mode for camera interface, hardware
acceleration for AES256, 2 USARTS, 2 UARTSs, 2 TWIs, 3 SPIs, as well as a 4-
channel PWM, 3 three-channel general-purpose 32-bit timers (with stepper motor
and quadrature decoder logic support), a low-power RTC, a low-power RTT, 256-
bit General Purpose Backup Registers, 2 Analog Front End interfaces (16-bit
ADC, DAC, MUX and PGA), one 12-bit DAC (2-channel) and an analog
comparator.

The SAMAE devices have three software-selectable low-power modes: Sleep,
Wait and Backup. In Sleep mode, the processor is stopped while all other
functions can be kept running. In Wait mode, all clocks and functions are stopped
but some peripherals can be configured to wake up the system based on
predefined conditions.

The Real-time Event Managment allows peripherals to receive, react to and send
events in Active and Sleep modes without processor intervention.

Atmel-11157H-ATARM-SAM4E16-SAM4ES8-Datasheet_31-Mar-16

Atmel SMART

1. Features

e Core
— ARM Cortex-M4 with 2 Kbytes Cache running at up to 120 MHz™")
— Memory Protection Unit (MPU)
— DSP Instruction
— Floating Point Unit (FPU)
— Thumb®-2 Instruction Set
e Memories
— Up to 1024 Kbytes Embedded Flash
— 128 Kbytes Embedded SRAM
— 16 Kbytes ROM with Embedded Boot Loader Routines (UART) and IAP Routines
— Static Memory Controller (SMC): SRAM, NOR, NAND Support
— NAND Flash Controller
e System
— Embedded Voltage Regulator for Single Supply Operation
— Power-on-Reset (POR), Brown-out Detector (BOD) and Dual Watchdog for Safe Operation
— Quartz or Ceramic Resonator Oscillators: 3 to 20 MHz Main Power with Failure Detection and Optional Low-
power 32.768 kHz for RTC or Device Clock
— RTC with Gregorian and Persian Calendar Mode, Waveform Generation in Backup mode
— RTC counter calibration circuitry compensates for 32.768 kHz crystal frequency inaccuracy
— High Precision 4/8/12 MHz Factory Trimmed Internal RC Oscillator with 4 MHz Default Frequency for Device
Startup. In-application Trimming Access for Frequency Adjustment
— Slow Clock Internal RC Oscillator as Permanent Low-power Mode Device Clock
— One PLL up to 240 MHz for Device Clock and for USB
— Temperature Sensor
— Low-power tamper detection on two inputs, anti-tampering by immediate clear of general-purpose backup
registers (GPBR)
— Up to 2 Peripheral DMA Controllers (PDC) with up to 33 Channels
— One 4-channel DMA Controller
e Low-power Modes
— Sleep, Wait and Backup modes, down to 0.9 pA in Backup mode with RTC, RTT, and GPBR
e Peripherals
— Two USARTs with USART1 (ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Modes)
— USB 2.0 Device: Full Speed (12 Mbits), 2668 byte FIFO, up to 8 Endpoints. On-chip Transceiver
— Two 2-wire UARTs
— Two 2-wire Interfaces (TWI)
— High-speed Multimedia Card Interface (SDIO/SD Card/MMC)
— One Master/Slave Serial Peripheral Interface (SPI) with Chip Select Signals
— Three 3-channel 32-bit Timer/Counter blocks with Capture, Waveform, Compare and PWM Mode. Quadrature
Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor
— 32-bit low-power Real-time Timer (RTT) and low-power Real-time Clock (RTC) with calendar and alarm features
— 256-bit General Purpose Backup Registers (GPBR)
— One Ethernet MAC (GMAC) 10/100 Mbps in MIl mode only with dedicated DMA and Support for IEEE1588,
Wake-on-LAN
— Two CAN Controllers with eight Mailboxes
— 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time Generator Counter for Motor
Control
— Real-time Event Management

2 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

e Cryptography
— AES 256-bit Key Algorithm compliant with FIPS Publication 197
e Analog
— AFE (Analog Front End): 2x16-bit ADC, up to 24-channels, Differential Input Mode, Programmable Gain Stage,
Auto Calibration and Automatic Offset Correction
— One 2-channel 12-bit 1 Msps DAC
— One Analog Comparator with Flexible Input Selection, Selectable Input Hysteresis
e |/O
— Upto 117 I/O Lines with External Interrupt Capability (Edge or Level Sensitivity), Debouncing, Glitch Filtering
and On-die Series Resistor Termination
— Bidirectional Pad, Analog I/O, Programmable Pull-up/Pull-down
— Five 32-bit Parallel Input/Output Controllers, Peripheral DMA Assisted Parallel Capture Mode
e Packages

— 144-ball LFBGA, 10x10 mm, pitch 0.8 mm

— 100-ball TFBGA, 9x9 mm, pitch 0.8 mm

— 144-lead LQFP, 20x20 mm, pitch 0.5 mm

— 100-lead LQFP, 14x14 mm, pitch 0.5 mm
Note: 1. 120 MHz: -40/+105°C, VDDCORE = 1.2V

/ItmeL SAMAE Series [DATASHEET] 3

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11

4

Configuration Summary

The SAMAE series devices differ in memory size, package and features. Table 1-1 summarizes the configurations

of the device family.

Table 1-1. Configuration Summary
Feature SAM4E16E SAM4ESE SAM4E16C SAM4E8C
Flash 1024 Kbytes 512 Kbytes 1024 Kbytes 512 Kbytes
SRAM 128 Khytes 128 Kbytes
CMCC 2 Kbytes 2 Kbytes
Package LFBGA 144 TFBGA 100
LQFP 144 LQFP 100
Number of PIOs 117 79

External Bus Interface

8-bit Data, 4 Chip Selects, 24-bit Address

Analog Front End

Up to 16 bits™®

Up to 16 bits™

(AFEO\AFE1) 16 ch./8ch. @ 6ch./4ch. ©®
GMAC 10/100 Mbps 10/100 Mbps
CAN 2 1
12-bit DAC 2 ch. 2 ch.
Timer 9 9®)
PDC Channels 24 +9 21 +9
USART/ UART 2/2) 2120
USB Full Speed Full Speed
HSMCI 1 port, 4 bits 1 port, 4 bits
TWI 2 2

Notes: 1. ADC is 12-bit, up to 16 bits with averaging.
For details, please refer to Section 46. “SAMAE Electrical Characteristics”.

2. AFEO s 16 channels and AFEL1 is 8 channels. The total number of AFE channels is 24.
One channel is reserved for the internal temperature sensor.

3. AFEO is 6 channels and AFEL1 is 4 channels. The total number of AFE channels is 10.
One channel is reserved for the internal temperature sensor.

4. Nine TC channels are accessible through PIO.

o

6. Full Modem support on USART1.

SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Three TC channels are accessible through PIO and 6 channels are reserved for internal use.

Atmel

9T-IeN-TE 193Useleq-83vNVS-9TarNVS-IWHY LY-H.STTT-pWwiv

[L33HSV1vA] seuas AYINYS

oWy

S

System Controller

TST

XIN
Xout

PCK[2:0]

ERASE «—»|

WKUP[15:0] <—»|

XIN32 4—p|
XOUT32 +—»|

RTCOUTO «—>|
RTCOUT1 +—*

NRST ¢—F— >
VDDPLL —|
VDDIO ——»|
VDDCORE ——p/|

A

&
SEY
N
RO
it Emulator Flash
Unique ID
Cortex-M4 Processor .
ROM Flash
fyax 120 MHz 16 Koytes 128Kbytes | | 1024 Kbytes
512 Kbytes
S S S S M M
7-layer Bus Matrix
fiuax 120 MHz
S i’% i’%
Penpheral Bridge 0 [PDCO | Peripheral Bridge 1 [PDCT |

'ﬁi#ﬁﬁii

FIEFE

OIS >
SR AN %0
RS 0 Q\oeo
S

RS
RN OANY

S—]
2, ———>,

iy
8]

"T-Z 8inbi4

welbeiq yoo|g uld-44T IFINVS

'S92IASP JYINVYS 9Y1 JO Sainjea) pue abeyoed ‘azis Alowaw Jo suoneinbijuod pajrelap Ioj T-T 9|gel 39S

K4

welbeiqg 3o0|g

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level | Reference Comments
Power Supplies
VDDIO Peripherals 1/0 Lines Power Supply Power - - 1.62V to 3.6V
VDDIN Voltage Regulator Input, DAC and Analog Power _ B 1.62V to 3.6VY
Comparator Power Supply
VDDOUT Voltage Regulator Output Power - - 1.2V Output
VDDPLL Oscillator and PLL Power Supply Power - - 1.08 Vto 1.32V
VDDCORE Power the core, the embedded memories Power _ _ 1.08V to 1.32V
and the peripherals
GND Ground Ground - - -
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input - Reset State:
XOUT Main Oscillator Output Output - - PIO Input
XIN32 Slow Clock Oscillator Input Input - - Internal Pull-up disabled
XOUT32 Slow Clock Oscillator Output Output - voblo L Schmitt Trigger enabled®
Reset State:
- PIO Input
PCKO-PCK2 Programmable Clock Output Output -
- Internal Pull-up enabled
- Schmitt Trigger enabled®
Real-time Clock
RTCOUTO Programmable RTC waveform output Output - Reset State:
- PIO Input
VDDIO
RTCOUT1 Programmable RTC waveform output Output - - Internal Pull-up enabled
- Schmitt Trigger enabled®
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Input -
Reset State:
TDI Test Data In Input -
N pu _ SWJ-DP Mode
TDO/TRACESWO | lestData Out/Trace Asynchronous Data |y, ¢ - - Internal Pull-up disabled®®
Out VDDIO
— - Schmitt Trigger enabled®
TMS/SWDIO Test Mode Select /Serial Wire Input/Output | Input/ /O -
JTAGSEL JTAG Selection Input | High Permanent Internal
Pull-down
Flash Memory
Reset State:
Flash and NVM Configuration Bits E - Erase Input
ash an onfiguration Bits Erase .
ERASE Comtoat s 9 Input | High | VDDIO | . internal Pull-down
enabled
- Schmitt Trigger enabled®
6 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level | Reference Comments
Reset/Test
NRST Synchronous Microcontroller Reset I} Low Permanent Internal
VDDIO Pull-up
TST Test Select Input - Permanent Internal
Pull-down
Wake-up
WKUP[15:0] Wake-up Inputs Input ’ - ‘ VDDIO -
Universal Asynchronous Receiver Transceiver - UARTx
URXDx UART Receive Data Input - - -
UTXDx UART Transmit Data Output - - -
PIO Controller - PIOA - PIOB - PIOC - PIOD - PIOE
PAO-PA31 Parallel 10 Controller A I/0 - Reset State:
PBO-PB14 Parallel 10 Controller B lle} - - PIO or System 10s"
- Internal Pull-up enabled
PCO-PC31 Parallel IO Controller C 1/0 - - Schmitt Trigger enabled®
PDO-PD31 Parallel IO Controller D I/0 - VbpIo Reset State:
- P1O or System 10s)
PEO-PES5 Parallel IO Controller E /0 - - Internal Pull-up enabled
- Schmitt Trigger enabled®
PIO Controller - Parallel Capture Mode
PIODCO-PIODC? Parallel Capture Mode Data Input -
PIODCCLK Parallel Capture Mode Clock Input - VDDIO -
PIODCEN1-2 Parallel Capture Mode Enable Input -
High Speed Multimedia Card Interface - HSMCI
MCCK Multimedia Card Clock /0 - - -
MCCDA Multimedia Card Slot A Command I/0 - - -
MCDAO-MCDA3 Multimedia Card Slot A Data /0 - - -
Universal Synchronous Asynchronous Receiver Transmitter USARTX
SCKx USARTX Serial Clock I/0 - - -
TXDx USARTX Transmit Data I/0 - - -
RXDx USARTXx Receive Data Input - - -
RTSx USARTx Request To Send Output - - -
CTSx USARTX Clear To Send Input - - -
DTR1 USART1 Data Terminal Ready 110 - - -
DSR1 USART1 Data Set Ready Input - - -
DCD1 USART1 Data Carrier Detect Output - - -
RI1 USART1 Ring Indicator Input - - -
SAMA4E Series [DATASHEET)] 7

Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 3-1. Signal Description List (Continued)
Active Voltage
Signhal Name Function Type Level | Reference Comments
Timer/Counter - TC
TCLKX TC Channel x External Clock Input Input - - -
TIOAX TC Channel x I/O Line A I/10 - - -
TIOBx TC Channel x I/O Line B I/0 - - -
Serial Peripheral Interface - SPI
MISO Master In Slave Out I/0 - - -
MOSI Master Out Slave In /0 - - -
SPCK SPI Serial Clock I/0 - - -
SPI_NPCSO0 SPI Peripheral Chip Select 0 1/0 Low - -
gg::mggg_ SPI Peripheral Chip Select Output Low - -
Two-Wire Interface - TWIX
TWDx TWIx Two-wire Serial Data I/0 - - -
TWCKx TWIx Two-wire Serial Clock I/0 - - -
Analog
ADVREE ADC, DAC and Analog Comparator Analog _ e _
Reference
12-bit Analog-Front-End - AFEx
Acoapla | Anaog mpus D | - -
AELAD- | praiog input g | - " -
ADTRG Trigger Input - VDDIO -
12-bit Digital-to-Analog Converter - DAC
DACO-DAC1 Analog output A[;‘ig'i:ﬁ' - ¢ -
DATRG DAC Trigger Input - VvDDIO -
Fast Flash Programming Interface - FFPI
PGMENO-PGMENL1 | Programming Enable Input -
PGMMO-PGMM3 Programming Mode Input -
PGMDO0O-PGMD15 Programming Data I/10 -
PGMRDY Programming Ready Output High vVDDIO -
PGMNVALID Data Direction Output Low -
PGMNOE Programming Read Input Low -
PGMCK Programming Clock Input -
PGMNCMD Programming Command Input Low -
External Bus Interface
DO-D7 Data Bus I/0 - - -
AO0-A23 Address Bus Output - - -
NWAIT External Wait Signal Input Low - -
8 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level | Reference Comments
Static Memory Controller - SMC
NCS0-NCS3 Chip Select Lines Output Low - -
NRD Read Signal Output Low - -
NWE Write Enable Output Low - -
NAND Flash Logic
NANDOE NAND Flash Output Enable Output Low - -
NANDWE NAND Flash Write Enable Output Low - -
Pulse Width Modulation Controller - PWMC
PWMH PWM Waveform Output High for channel x Output - - -
Only output in
PWML PWM Waveform Output Low for channel x Output - - er;(?lt?r?:?ntgzt?;ﬁg when
enabled.
PWMFIO PWM Fault Input Input - - -
Ethernet MAC 10/100 - GMAC
GTXCK Transmit Clock Input - - -
GRXCK Receive Clock Input - - -
GTXEN Transmit Enable Output - - -
GTX0-GTX3 Transmit Data Output - - -
GTXER Transmit Coding Error Output - - -
GRXDV Receive Data Valid Input - - -
GRX0-GRX3 Receive Data Input - - -
GRXER Receive Error Input - - -
GCRS Carrier Sense Input - - -
GCOL Collision Detected Input - - -
GMDC Management Data Clock Output - - -
GMDIO Management Data Input/Output 1/0 - - -
Controller Area Network - CAN (x=[0:1])
CANRXx CAN Receive Input - - -
CANTXx CAN Transmit Output - - -
USB Full Speed Device
Reset State:
DDM DDM USB Full Speed Data - - @ - USB Mode
Analog, - Internal Pull-down
Digital Reset State:
DDP DDP USB Full Speed Data + - -@ - USB Mode
- Internal Pull-down
Notes: 1. See Section 5.4 “Typical Powering Schematics” for restrictions on voltage range of Analog Cells and USB.

2. Schmitt Triggers can be disabled through PIO registers.

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

9

3. TDO pinis set in input mode when the Cortex-M4 Core is not in debug mode. Thus the internal pull-up corresponding to this
PIO line must be enabled to avoid current consumption due to floating input.

4. Some PIO lines are shared with System 1/Os.

10 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4. Package and Pinout

The SAM4E is available in TFBGA100, LFBGA144, LQFP100, and LQFP144 and packages described in Section
47. “SAMA4E Mechanical Characteristics”.

4.1 100-ball TFBGA Package and Pinout

411 100-ball TFBGA Package Outline

The 100-ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Refer to Section 47.1 “100-
ball TFBGA Package Drawing” for details.

4.1.2 100-ball TFBGA Pinout

Table 4-1. SAMA4E 100-ball TFBGA Pinout

Al PB9 Cc6 PD29 F1 PA19/PGMD7 H6 PA14/PGMD2
A2 PB8 c7 PA30 F2 PA20/PGMD8 H7 PA25/PGMD13
A3 PB14 Cc8 PB5 F3 PD23 H8 PA27/PGMD15
Ad PB10 C9 PD10 F4 GND H9 PA5/PGMRDY
A5 PD4 C10 PA1/PGMEN1 F5 GND H10 PA4/PGMNCMD
A6 PD7 D1 ADVREF F6 GND J1 PA21/PGMD9
A7 PA31 D2 PD1 F7 TST J2 PA7/PGMNVALID
A8 PA6/PGMNOE D3 GND F8 PB12 J3 PA22/PGMD10
A9 PA28 D4 GND F9 PA3 Ja PD22

A10 JTAGSEL D5 PD5 F10 PD14 J5 PA16/PGMD4
Bl PD31 D6 VDDCORE Gl PA17/PGMD5 J6 PA15/PGMD3
B2 PB13 D7 VDDCORE G2 PA18/PGMD6 J7 PD28

B3 VDDPLL D8 PAO/PGMENO G3 PD26 J8 PA11/PGMM3
B4 PB11 D9 PD11 G4 PD24 J9 PA9/PGMM1
B5 PD3 D10 PA2 G5 PA13/PGMD1 J10 PD17

B6 PD6 El PBO G6 VDDCORE K1 PD30

B7 PD8 E2 PB1 G7 VDDIO K2 PA8/PGMMO
B8 PD9 E3 PD2 G8 PB6 K3 PD20

B9 PB4 E4 GND G9 PD16 K4 PD19

B10 PD15 ES VDDIO G10 NRST K5 PA23/PGMD11
C1 PDO E6 VDDIO H1 PB2 K6 PD18

Cc2 VDDIN E7 GND H2 PB3 K7 PA24/PGMD12
C3 VDDOUT E8 PD13 H3 PD25 K8 PA26/PGMD14
C4 GND E9 PB7 H4 PD27 K9 PA10/PGMM2
C5 PA29 E10 PD12 H5 PD21 K10 PA12/PGMDO

/ItmeL SAMAE Series [DATASHEET] 11

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4.2 144-ball LFBGA Package and Pinout

421 144-ball LFBGA Package Outline

The 144-ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Refer to Section 47.2 “144-
ball LFBGA Package Drawing” for details.

422 144-ball LFBGA Pinout

Table 4-2. SAMA4E 144-ball LFBGA Pinout

Al PE1 D1 ADVREF Gl PC15 K1 PE4

A2 PB9 D2 GND G2 PC13 K2 PA21/PGMD9
A3 PB8 D3 PD31 G3 PB1 K3 PA22/PGMD10
A4 PB11 D4 PDO G4 GND K4 PC2

A5 PD2 D5 GNDPLL G5 GND K5 PA16/PGMD4
A6 PA29 D6 PD4 G6 GND K6 PA14/PGMD2
A7 PC21 D7 PD5 G7 GND K7 PC6

A8 PD6 D8 PC19 G8 VDDIO K8 PA25/PGMD13
A9 PC20 D9 PD9 G9 PD13 K9 PD20
A10 PA30 D10 PD29 G10 PD12 K10 PD28

All PD15 D11 PC16 Gl PC9 K11 PD16

Al12 PB4 D12 PA1/PGMEN1 G12 PB12 K12 PA4/PGMNCMD
Bl PE2 El PC31 H1 PA19/PGMD7 L1 PES

B2 PB13 E2 PC27 H2 PA18/PGMD6 L2 PA7/PGMNVALID
B3 VDDPLL E3 PE3 H3 PA20/PGMD8 L3 PC3

B4 PB10 E4 PCO H4 PBO L4 PA23/PGMD11
BS PD1 ES GND H5 VDDCORE LS PA15/PGMD3
B6 PC24 E6 GND H6 VDDIO L6 PD26

B7 PD3 E7 VDDIO H7 VDDIO L7 PA24/PGMD12
B8 PD7 E8 VDDCORE H8 VDDCORE L8 PC5

B9 PA6/PGMNOE E9 PD8 H9 PD21 L9 PA10/PGMM2
B10 PC18 E10 PC14 H10 PD14 L10 PA12/PGMDO
B11 JTAGSEL El1 PD11 H11 TEST L11 PD17

B12 PC17 E12 PA2 H12 NRST L12 PC28

C1 VDDIN F1 PC30 J1 PA17/PGMD5 M1 PD30

c2 PEO F2 PC26 J2 PB2 M2 PA8/PGMMO
C3 VDDOUT F3 PC29 J3 PB3 M3 PA13/PGMD1
(o2) PB14 F4 PC12 J4 PC1 M4 PC7

C5 PC25 F5 GND J5 PC4 M5 PD25

Cc6 PC23 F6 GND J6 PD27 M6 PD24

Cc7 PC22 F7 GND J7 VDDCORE M7 PD23

Cc8 PA31 F8 VDDIO J8 PA26/PGMD14 M8 PD22

C9 PA28 F9 PB7 J9 PA11/PGMM3 M9 PD19

C10 PB5 F10 PC10 J10 PA27/PGMD15 M10 PD18

c1l PAO/PGMENO F11 PC11 Ji1 PB6 M11 PA5/PGMRDY
C12 PD10 F12 PA3 J12 PC8 M12 PA9/PGMM1

12 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4.3 100-lead LQFP Package and Pinout

431 100-lead LQFP Package Outline

The 100-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards. Please refer to Section 47.3
“100-lead LQFP Package Drawing” for details.

4.3.2 100-lead LQFP Pinout

Table 4-3. SAMAE 100-lead LQFP Pinout

1 PDO 26 PA22/PGMD10 51 PD28 76 PD29
2 PD31 27 PA13/PGMD1 52 PA5/PGMRDY 77 PBS

3 GND 28 VDDIO 53 PD17 78 PD9

4 VDDOUT 29 GND 54 PA9/PGMM1 79 PA28
5 VDDIN 30 PA16/PGMD4 55 PA4/PGMNCMD 80 PD8

6 GND 31 PA23/PGMD11 56 PD16 81 PA6/PGMNOE
7 GND 32 PD27 57 PB6 82 PA30

8 GND 33 PA15/PGMD3 58 NRST 83 PA31

9 ADVREF 34 PA14/PGMD2 59 PD14 84 PD7
10 GND 35 PD25 60 TST 85 PD6
11 PB1 36 PD26 61 PB12 86 VDDCORE
12 PBO 37 PD24 62 PD13 87 PD5
13 PA20/PGMD8 38 PA24PGMD12 63 PB7 88 PD4
14 PA19/PGMD7 39 PD23 64 PA3 89 PD3
15 PA18/PGMD6 40 PA25/PGMD13 65 PD12 90 PA29
16 PA17/PGMD5 41 PD22 66 PA2 91 PD2
17 PB2 42 PA26/PGMD14 67 GND 92 PD1
18 VDDCORE 43 PD21 68 VDDIO 93 VDDIO
19 VDDIO 44 PA11/PGMM3 69 PD11 94 PB10
20 PB3 45 PD20 70 PA1/PGMEN1 95 PB11
21 PA21/PGMD9 46 PA10/PGMM2 71 PD10 96 VDDPLL
22 VDDCORE 47 PD19 72 PAO/PGMENO 97 PB14
23 PD30 48 PA12/PGMDO 73 JTAGSEL 98 PB8
24 PA7/PGMNVALID 49 PD18 74 PB4 99 PB9
25 PA8/PGMMO 50 PA27/PGMD15 75 PD15 100 PB13

/ItmeL SAMAE Series [DATASHEET] 13

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4.4 144-lead LQFP Package and Pinout

441 144-lead LQFP Package Outline

The 144-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards. Please refer to Section 47.4
“144-lead LQFP Package Drawing” for details.

4.4.2 144-lead LQFP Pinout

Table 4-4. SAMAE 144-lead LQFP Pinout
1 PDO 37 PA22/PGMD10 73 PA5/PGMRDY 109 PB5
2 PD31 38 PC1 74 PD17 110 PD9
3 VDDOUT 39 PC2 75 PA9/PGMM1 111 PC18
4 PEO 40 PC3 76 PC28 112 PA28
5 VDDIN 41 PC4 77 PA4/PGMNCMD 113 PD8
6 PE1 42 PA13/PGMD1 78 PD16 114 PA6/PGMNOE
7 PE2 43 VDDIO 79 PB6 115 GND
8 GND 44 GND 80 VDDIO 116 PA30
9 ADVREFP 45 PA16/PGMD4 81 VDDCORE 117 PC19
10 PE3 46 PA23/PGMD11 82 PC8 118 PA31
11 PCO 47 PD27 83 NRST 119 PD7
12 pPC27 48 PC7 84 PD14 120 PC20
13 PC26 49 PA15/PGMD3 85 TEST 121 PD6
14 PC31 50 VDDCORE 86 PC9 122 PC21
15 PC30 51 PA14/PGMD2 87 PB12 123 VDDCORE
16 PC29 52 PD25 88 PD13 124 PC22
17 PC12 53 PD26 89 PB7 125 PD5
18 PC15 54 PC6 90 PC10 126 PD4
19 PC13 55 PD24 91 PA3 127 PC23
20 PB1 56 PA24/PGMD12 92 PD12 128 PD3
21 PBO 57 PD23 93 PA2 129 PA29
22 PA20/PGMD8 58 PC5 94 PC11 130 PC24
23 PA19/PGMD7 59 PA25/PGMD13 95 GND 131 PD2
24 PA18/PGMD6 60 PD22 96 VDDIO 132 PD1
25 PA17/PGMD5 61 GND 97 PC14 133 PC25
26 PB2 62 PA26/PGMD14 98 PD11 134 VDDIO
27 PE4 63 PD21 99 PA1/PGMEN1 135 GND
28 PE5 64 PA11/PGMM3 100 PC16 136 PB10
29 VDDCORE 65 PD20 101 PD10 137 PB11
30 VDDIO 66 PA10/PGMM2 102 PAO/PGMENO 138 GND
31 PB3 67 PD19 103 PC17 139 VDDPLL
32 PA21/PGMD9 68 PA12/PGMDO 104 JTAGSEL 140 PB14
33 VDDCORE 69 PD18 105 PB4 141 PB8
34 PD30 70 PA27/PGMD15 106 PD15 142 PB9
35 PA7/PGMNVALID 71 PD28 107 VDDCORE 143 VDDIO
36 PA8/PGMMO 72 VDDIO 108 PD29 144 PB13

14 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5. Power Considerations

5.1 Power Supplies

The SAM4E has several types of power supply pins:

e VDDCORE pins: power the core, the first flash rail, the embedded memories and the peripherals.
Voltage ranges from 1.08V to 1.32V.

e VDDIO pins: power the peripheral I/0O lines (Input/Output Buffers), the second flash rail, the backup part, the
USB transceiver, 32 kHz crystal oscillator and oscillator pads.
Voltage ranges from 1.62V to 3.6V.

e VDDIN pins: voltage regulator input, DAC and Analog Comparator power supply.
Voltage ranges from 1.62V to 3.6V.

e VDDPLL pin: powers the PLL, the Fast RC and the 3 to 20 MHz oscillator.
Voltage ranges from 1.08V to 1.32V.

5.2 Power-up Considerations

521 VDDIO Versus VDDCORE
Vppio Must always be higher than or equal to Vppcogre-

Vppio Must reach its minimum operating voltage (1.62 V) before Vppcore has reached Vppcorgmin: The minimum
slope for Vppeore is defined by (Vppcoregmin = Vr+) / trs

If Vopcore rises at the same time as Vpp,o, the Vpp g rising slope must be higher than or equal to 8.8 V/ms.
If VDDCORE is powered by the internal regulator, all power-up considerations are met

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V) 4
VDDIO
Vooiomin VDDCORE
VDDCORE(mln)
v,
Time (t)

Core supply POR output

stex [N AR A

/ItmeL SAMAE Series [DATASHEET] 15

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5.2.2

VDDIO Versus VDDIN

At power-up, Vpp,o Needs to reach 0.6 V before Vg reaches 1.0 V.

VDDIO voltage needs to be equal to or below (VDDIN voltage + 0.5 V).

5.3

Voltage Regulator

The SAM4E embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAMAE. It features two operating modes:

In Normal mode, the voltage regulator consumes less than 500 pA static current and draws 80 mA of output
current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load
current. In Wait Mode quiescent current is only 5 pA.

In Backup mode, the voltage regulator consumes less than 1.5 pA while its output (VDDOUT) is driven
internally to GND. The default output voltage is 1.20V and the start-up time to reach Normal mode is less
than 300 ps.

For adequate input and output power supply decoupling/bypassing, refer to Table 46-3, “1.2V Voltage Regulator
Characteristics,” on page 1357.

5.4

Typical Powering Schematics

The SAMA4E supports a 1.62—3.6 V single supply mode. The internal regulator input is connected to the source and
its output feeds VDDCORE. Figure 5-2 shows the power schematics.

As VDDIN powers the voltage regulator, the DAC and the analog comparator, when the user does not want to use
the embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from
Backup mode).

Figure 5-2.

Note:

16

SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Single Supply

UsB
Transceivers

Main Supply
(1.62-3.6 V)

ale

! '

' AFEC, DAC,

. Analog Comp.
|

{11 f

VDDOUT —
E‘ Voltage

' Regulator

VDDCORE
ot L]

VDDIN

Sl

VDDPLL I:Ej

Restrictions:
- For USB, VDDIO needs to be greater than 3.0V
- For AFEC, DAC, and Analog Comparator, VDDIN needs to be greater than 2.4V

Atmel

Figure 5-3. Core Externally Supplied

Regulator

VDDCORE Supply VDDCORE

(1.08-1.32 V) T

Main Supply VDDIO]
(1.62-3.6 V) o j UsB
’. R Transceivers
Can be the : II' I
same supply ' 1 AFEC, DAC,
\ h Analog Comp.
: |
AFEC, DAC, Analog __y _ VDDIN
Comparator Supply - | |
(2.0-3.6 V) I
3 ovour [vorage
J
|
]
|
T
|
\

VDDPLL

Note: Restrictions:
- For USB, VDDIO needs to be greater than 3.0V
- For AFEC, DAC, and Analog Comparator, VDDIN needs to be greater than 2.4V

5.5 Active Mode

Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal
oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the
peripheral clocks.

5.6 Low-power Modes

The SAMA4E has the following low-power modes: Backup mode, Wait mode and Sleep mode.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes, how-
ever, this may add complexity in the design of application state machines. This is due to the fact that the WFE
instruction goes along with an event flag of the Cortex core (cannot be managed by the software application). The
event flag can be set by interrupts, a debug event or an event signal from another processor. Since it is possible for an
interrupt to occur just before the execution of WFE, WFE takes into account events that happened in the past. As a
result, WFE prevents the device from entering wait mode if an interrupt event has occurred.

Atmel has made provision to avoid using the WFE instruction. The workarounds to ease application design are as fol-
lows:

- For backup mode, switch off the voltage regulator and configure the VROFF bit in the Supply Controller Control Reg-
ister (SUPC_CR).

- For wait mode, configure the WAITMODE bit in the PMC Clock Generator Main Oscillator Register of the Power
Management Controller (PMC)

- For sleep mode, use the Wait for Interrupt (WFI) instruction.

Complete information is available in Table 5-1 “Low-power Mode Configuration Summary”.

5.6.1 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is
performing periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is
1 pA typical (VDDIO = 1.8 V at 25°C).

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or
crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are
off.

The SAM4E can be woken up from this mode using the pins WKUPO-15, the supply monitor (SM), the RTT or
RTC wake-up event.

/ItmeL SAMAE Series [DATASHEET] 17

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5.6.2

18

Backup mode is entered by writing a 1 to the VROFF bit of the Supply Controller Control Register (SUPC_CR) (A
key is needed to write the VROFF bit, refer to Section 18. “Supply Controller (SUPC)") and with the SLEEPDEEP
bit in the Cortex-M4 System Control Register set to 1. (See the power management description in Section 11.
“ARM Cortex-M4 Processor”).
To enter Backup mode using the VROFF bit:
e Write a 1 to the VROFF bit of SUPC_CR.
To enter Backup mode using the WFE instruction:
e Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
e Execute the WFE instruction of the processor.
In both cases, exit from Backup mode happens if one of the following enable wake-up events occurs:
Level transition, configurable debouncing on pins WKUPENO-15
Supply Monitor alarm
RTC alarm
RTT alarm

Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a
powered state for a startup time of less than 10 ps. Current consumption in Wait mode is typically 32 pA (total
current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered by setting the WAITMODE bit to 1 in the PMC Clock Generator Main Oscillator Register
(CKGR_MOR) in conjunction with FLPM = 0 or FLPM = 1 bits of the PMC Fast Startup Mode Register
(PMC_FSMR) or by the WFE instruction.

The Cortex-M4 is able to handle external or internal events in order to wake-up the core. This is done by
configuring the external lines WKUPO0-15 as fast startup wake-up pins (refer to Section 5.8 “Fast Start-up”). RTC
or RTT Alarm and USB wake-up events can be used to wake up the CPU.
To enter Wait mode with WAITMODE bit:
1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC_FSMR.
Set Flash Wait State to 0.
Set the WAITMODE bit = 1 in CKGR_MOR.
Wait for Master Clock Ready MCKRDY =1 in the PMC Status Register (PMC_SR).

enter Wait mode with WFE:
Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC_FSMR.
Set Flash Wait State to 0.
Set the LPM bit in the PMC_FSMR.
Execute the Wait-For-Event (WFE) instruction of the processor.

N

T

oA WwNE O 0ok ®

In both cases, depending on the value of the field FLPM, the Flash enters one of three different modes:
e FLPM =0 in Standby mode (low consumption)
e FLPM =1 in Deep power-down mode (extra low consumption)
e FLPM =2 in Idle mode. Memory ready for Read access

Table 5-1 summarizes the power consumption, wake-up time and system state in Wait mode.

SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5.6.3 Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode,
only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is
application dependent.

This mode is entered via Wait for Interrupt (WFI) or WFE instructions with bit LPM = 0 in PMC_FSMR.
The processor can be woken up from an interrupt if the WFI instruction of the Cortex-M4 is used or from an event

if the WFE instruction is used.
5.6.4 Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake-
up sources can be configured individually. Table 5-1 provides the configuration summary of the low-power modes.

/ItmeL SAMAE Series [DATASHEET] 19

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

9T-IeN-TE 193YseIeQ-83vINYS-9TIVINYS-INEY LY-H.STTT-dWV

0c

[1eaysereq] ssuas IVINVS

oWy

Table 5-1. Low-power Mode Configuration Summary
SUPC, 32 kHz Osc., Core PIO State
RTC, RTT, GPBR, POR Memory Potential Core at |whilein Low- | PIO State at | Consumption | Wake-up
Mode (Backup Region) |Regulator| Peripherals Mode Entry Wake-Up Sources | Wake-Up | Power Mode | Wake Up @ Time®
PIOA &
VROFF =1 WKUP0-15 pins PIOB &
OFF or SM alarm Previous state PIOC &
Backup Mode ON OFF Reset PIOD & 1pAtyp® | <1ms
(Not powered) |\yFE + RTC alarm saved PIOE
SLEEPDEEP =1 RTT alarm Inputs with
pull-ups
WAITMODE =1
+FLPM =0 Any Event from:
. Fast startup through
Wait Mode or .
. Powered WKUPO0-15 Clocked |Previous state
(5)
W/E?S:Am q ON ON (Not clocked) |WFE + RTC alarm back saved Unchanged 56 pA 10ps
Standby Mode SLEEPDEEP =0 RTT alarm
+LPM=1 USB wake-up
+FLPM =0
WAITMODE =1
+FLPM =1 Any Event from:
Wait Mode or Fast startup through
w/Flash in Powered WKUPO-15 Clocked | Previous state
Deep Power- ON ON (Not clocked) |WFE + RTC alarm back saved Unchanged 46.6pA | <100ps
down Mode SLEEPDEEP =0 RTT alarm
+LPM=1 USB wake-up
+FLPM =1
Entry mode = WFI
Interrupt Only;
Entry mode = WFE
WFE Any Enabled Interrupt
(7) . i
Sleep Mode ON ON Powered or and/or Any Event from:|Clocked |Previous state Unchanged ®) ®)
(Not clocked) |\wr| + SLEEPDEEP = o|Fast start-up through | back saved
+LPM=0 WKUP0-15
RTC alarm
RTT alarm
USB wake-up
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC

oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first
instruction is fetched.

No ahsMwbd

The external loads on PIOs are not taken into account in the calculation.
Supply Monitor current consumption is not included.

Total consumption is 1 pA typical (VDDIO = 1.8 V at 25°C).

Power consumption on VDDCORE. For total current consumption, please refer to Section 46. “SAMA4E Electrical Characteristics”.
Depends on MCK frequency.
In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.7 Wake-up Sources

The wake-up events allow the device to exit the Backup mode. When a wake-up event is detected, the Supply
Controller performs a sequence which automatically reenables the core power supply and the SRAM power
supply, if they are not already enabled. See Figure 18-4 "Wake-up Sources”.

5.8 Fast Start-up

The SAMA4E allows the processor to restart in a few microseconds while the processor is in Wait mode or in Sleep
mode. A fast start-up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUPO to
15 + RTC + RTT + USB).

The fast restart circuitry (shown in Figure 29-4 "Fast Startup Circuitry”) is fully asynchronous and provides a fast
start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC
automatically restarts the embedded 4/8/12 MHz Fast RC oscillator, switches the master clock on this 4 MHz clock
by default and reenables the processor clock.

/ItmeL SAMAE Series [DATASHEET] 21

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

6. Input/Output Lines

The SAMAE has several kinds of input/output (I/O) lines such as general purpose 1/0Os (GPIO) and system 1/Os.
GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line
can be used whether in I/O mode or by the multiplexed peripheral. System 1/Os include pins such as test pins,
oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-
down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt.
Programming of these modes is performed independently for each 1/O line through the PIO controller user
interface. For more details, refer to Section 33. “Parallel Input/Output Controller (PI1O)”.

Some GPIOs can have an alternate function as analog input. When a GPIO is set in analog mode, all digital
features of the I/O are disabled.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAMA4E device embeds high speed pads able. See Section 46.11 “AC Characteristics” for more details.
Typical pull-up and pull-down value is 100 kQ for all 1/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). It consists of an internal series
resistor termination scheme for impedance matching between the driver output (SAM4E) and the PCB trace
impedance preventing signal reflection. The series resistor helps to reduce 10s switching current (di/dt) thereby
reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect
between devices or between boards. In conclusion, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination

FTTTTTTTTTTTTToTTTTIToooooTs 20~ Z,+Rypr
! oDT !
! 36 Q Typ. :
i RQDT . ﬁ -----
E i)) Receiver
' SAM4 Driver with !
L zm00 i zoosa;
22 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

6.2 System I/O Lines
Table 6-1 lists the SAM4E system 1/O lines shared with PIO lines.

These pins are software configurable as general purpose 1/O or system pins. At startup, the default function of
these pins is always used.

Table 6-1. System 1/O Configuration Pin List
CCFG_SYSIO | Default Function Constraints
Bit No. after Reset Other Function for Normal Start Configuration
12 ERASE PB12 Low Level at startup®
! TCK/SWCLK PB7 - In Matrix User Interface Registers
6 TMS/SWDIO PB6 - (Refer to the System I/O Configuration Register in
5 TDO/TRACESWO PBS _ Section 24. “Bus Matrix (MATRIX)".)
4 TDI PB4 -
- PA7 XIN32(?) -
®)
- PA8 XouT32? -
- PB9 XIN -
4
- PB8 XOouT —

Notes: 1. If PB12is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase
before the user application sets PB12 into PIO mode.

2. When the 32kHz oscillator is used in Bypass mode, XIN32 (PA7) is used as external clock source input and
XOUT32 (PA8) can be left unconnected or used as GPIO.

3. Referto Section 18.4.2 “Slow Clock Generator”.
4. Referto Section 28.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator”.

/ItmeL SAMAE Series [DATASHEET] 23

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 7-1. SAMA4E Product Mapping
0x40000000 Peripherals
. PWM
o 36
040004000
Code Address memory space K AES
Boot Memory ,+* 0x40008000 39
Code . Reserved
Internal Flash Rl 0x40010000
o 0x20000000 CANO
intemalROM | _L.etT . . 040014000 8
0x00C00000 [=== 7" Internal SRAM CAN1
Reserved 0x40018000 %
Ox1FFFFFFF .~ 0x40000000 ‘ Reserved
040034000
Internal SRAM " Perpherals GMAC
R 040038000
SRAM R g h Reserved
R L 0x40044000
Reserved R4 . External SRAM |, Reserved MP Sys Controller
| 0x40060000 i
Undefined (Abort) [- +6xA0000000 | 0x40048000 I SMC
g . R d .
g : esene _-= 7 0x40080200 8
S Reserved N 0x40060000 Reserved
. \ 3 I
, . y 0440080000 MP Sys Controller 0x40060600
0 ! UART
0x60000000 —eal SRAM . | Hsuct ", 0x40060800
EBI Chip Select 0 B System | 040084000 S Reserved
. ' P N
0x61000000 K \ v 35 0x40061600
EBI Chip Select 1 |/ OXFFFFFFFF H 0x40088000 N reserved
0x62000000 ; sh OKAO0TFFFF
EBI Chip Select 2 K \ 0x4008C000 19)
:', H Reserved
EBI Chip Select 3 M \ 040090000
g | 00 1
reserved s \ +0x40 2
FFFFFFF | OO ey
| #0080 | 22
TC2
offset B 0140094000 |- 2
System Controll \ TC3
0x400E0000 Y= CONTOTET | 2
Reserved , 5 *oxd0 TC1
\ \ TC4
o 0 B 0B 2
MATRIX L T os
0x400E0400 | 2
e L 0140098000 |
5 \ TC6
o 0) . 27
o | \ 040 |
K B TC7
0x400E0740 " | 2
CHIPID 5 t 080 e
, | TC8
0 . \ 0x4009C000 2
Reserved K B
0 00 v B Reserved
' 0x400A0000
EEFC 3)
0x400E0C00 E : UShRTO
x resorvad ' 0x400A4000
. eserve | USARTA
oA \ . 0x400A8000
0x400E 1000 : ™o
X oo ' 0x400AC000 i
0x400E1200 10 ™
oo . 0x40080000 18
0x400E1400 " Yy AFECO
oD ", 0X400B4000
0x400E1600 12 Ly ArEct
x PoE 0x400B8000
0x400E1800 13 L pAce
X ST 0x400BC000 32
+0x10 ! e
X101 svsc e 0x400C0000 33
+0x30 \ omae
0 - so e 0x400C3000 2
0 3 cMee
¥ svsc 0x400C8000
woT [
0560 4 Y Reserved
¥ svsc 0x400E0000
RTC .
090 2 | System Controller
" 'svsc 0x400E2600-
GPBR JOrRan
+0X100 . ' Reserved
Lt 060000000
SYSC pswor PPtias

7.

7.1

Memories

Product Mapping

SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

7.2 Embedded Memories

7.2.1 Internal SRAM
The SAMA4E device (1024 Kbytes) embeds a total of 128-Kbyte high-speed SRAM.
The SRAM is accessible over System Cortex-M4 bus at address 0x2000_0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200_0000 to 0x23FF_FFFF.

7.2.2 Internal ROM

The SAMA4E device embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In Application
Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

7.2.3 Embedded Flash

7.2.3.1 Flash Overview

The memory is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided
into three smaller sectors.

The three smaller sectors are organized to consist of two sectors of 8 Kbytes and one sector of 48 Kbytes. Refer to
Figure 7-2.

Figure 7-2. Global Flash Organization

Flash Organization

Sector size Sector name

8 Kbytes Small Sector 0

8 Kbytes Small Sector 1 Sector 0
48 Kbytes Larger Sector

64 Kbytes Sector 1

64 Kbytes Sector n

Each Sector is organized in pages of 512 bytes.

/ItmeL SAMAE Series [DATASHEET] 25

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For sector 0:
e The smaller sector 0 has 16 pages of 512 bytes
e The smaller sector 1 has 16 pages of 512 bytes
e The larger sector has 96 pages of 512 bytes
From Sector 1 to n:

The rest of the array is composed of 64 Kbyte sector of each 128 pages of 512 bytes. Refer to Figure 7-3.

Figure 7-3. Flash Sector Organization
Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 bytes Smaller sector O

Sector 0 16 pages of 512 bytes Smaller sector 1

96 pages of 512 bytes Larger sector

Sector n 128 pages of 512 bytes

Flash size varies by product. The Flash size of SAM4E device is 1024 Kbytes.
Refer to Figure 7-4 for the organization of the Flash following its size.

Figure 7-4. Flash Size
Flash 1 Mbyte

2 * 8 Kbytes

1 * 48 Kbytes

15 * 64 Kbytes

26 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The following erase commands can be used depending on the sector size:
e 8 Kbyte small sector
— Erase and write page (EWP)
— Erase and write page and lock (EWPL)
— Erase sector (ES) with FARG set to a page number in the sector to erase

— Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.
FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.

e 48 Kbyte and 64 Kbyte sectors
— One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1
— One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2
— One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3

— One sector with the command Erase sector (ES) and FARG set to a page number in the sector to
erase

e Entire memory plane
— The entire Flash, with the command Erase all (EA).

The write commands of the Flash cannot be used under 330 kHz.

7.2.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.
It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

7.2.3.3 Flash Speed
The user needs to set the number of wait states depending on the frequency used:
For more details, refer to the “AC Characteristics” section of the product “Electrical Characteristics”.
Target for the Flash speed at O wait state: 24 MHz.

7.2.3.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of
several consecutive pages, and each lock region has its associated lock bit.

Table 7-1. Lock Bit Number
Product Number of lock bits Lock region size
SAMAE 128 8 Kbytes

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC triggers an
interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables
the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

AtmeL SAMAE Series [DATASHEET] 27

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

7.2.35 Security Bit Feature

The SAMAE device features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either through the
ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the
code programmed in the Flash.

This security bit can only be enabled through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash
erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal
Peripherals are permitted.

The ERASE pin integrates a permanent pull-down. Consequently, it can be left unconnected during normal
operation. However, it is recommended, in harsh environment, to connect it directly to GND if the erase operation
is not used in the application.

To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in
Table 46-68 “AC Flash Characteristics”.

The erase operation is not performed when the system is in Wait mode with the Flash in Deep-power-down mode.

To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE
pin as GPIO or enter Wait mode with Flash in Deep-power-down mode before the ERASE pin assertion time has
elapsed.

The following sequence ensures the erase operation in all cases:
1. Assert the ERASE pin (High)
2. Assert the NRST pin (Low)
3. Power cycle the device
4. Maintain the ERASE pin high for at least the minimum assertion time.
7.2.3.6 Calibration Bits
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured
and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.
7.2.3.7 Unique Identifier
Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed
by the user. The ERASE pin has no effect on the unique identifier.
7.2.3.8 User Signature

Each part contains a User Signature of 512 bytes. It can be used by the user to store user information, such as
trimming, keys, etc., that the customer does not want to be erased by asserting the ERASE pin or by software
ERASE command. Read, write and erase of this area is allowed.

7.2.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through a multiplexed fully-handshaked
parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when TST and PAO
and PAlare tied low.

28 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

7.2.3.10

7.2.3.11

7.2.4

7.3

7.4

SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash
memory.

The SAM-BA Boot Assistant supports serial communication via the UART.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

GPNVM Bits

The SAMA4E device features two GPNVM bits. These bits can be cleared or set respectively through the
commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

The Flash of SAMAE is composed of 1024 Kbytes in a single bank.

Table 7-2. General-purpose Non-volatile Memory Bits
GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection

Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be
changed via GPNVM.
A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-purpose NVM Bit” and
“Set General-purpose NVM Bit” of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE
clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

External Memories

The SAM4E device features one External Bus Interface to provide an interface to a wide range of external
memories and to any parallel peripheral.

Cortex-M Cache Controller (CMCC)

The SAMA4E device features one cache memory and his controller which improve code execution when the code
runs out of Code section (memory from 0x0 to 0x2000_0000).
The Cache controller handles both command instructions and data, it is an unified cache:

e L1 data cache size set to 2 Khytes

e L1 cachelineis 16 bytes

e L1 cache integrates 32 bits bus master interface

e Unified 4-way set associative cache architecture

/ItmeL SAMAE Series [DATASHEET] 29

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

8. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to select the one

required.
8.1 Embedded Characteristics

e Timers, PWM, IO peripherals generate event triggers which are directly routed to event managers such as
AFEC or DACC, for example, to start measurement/conversion without processor intervention.

e UART, USART, SPI, TWI, PWM, HSMCI, AES, AFEC, DACC, PIO, TIMER (capture mode) also generate
event triggers directly connected to Peripheral DMA Controller (PDC) for data transfer without processor
intervention.

e Parallel capture logic is directly embedded in PIO and generates trigger event to PDC to capture data
without processor intervention.

e PWM security events (faults) are in combinational form and directly routed from event generators (AFEC,
ACC, PMC, TIMER) to PWM module.

e PWM output comparators generate events directly connected to TIMER.

e PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC
internal clock without processor intervention.

8.2 Real-time Event Mapping
Table 8-1. Real-time Event Mapping List
Function Application Description Event Source Event Destination
. Parallel Input/Output General Purpose
Security General-purpose !rn;meslra(;itggiiﬁ ;1'?:[; (E%Tgéoor;iulg) Oirr]15 w Controller (P10): Backup Registers
P 9 P WKUPO/1 (GPBR)
General-purpose Automatic Switch to reliable main RC oscillator Power Management PMC
purp in case of Main Crystal Clock Failure Controller (PMC)
urGoesneer;I;)tor Puts the PWM Outputs in Safe Mode (Main PMC
PUrpose, Crystal Clock Failure Detection) ?©)
control
Puts the PWM Outputs in Safe Mode Analog Comparator
(Overcurrent sensor, ...) ©® Controller (ACC)
Safety Puts the PWM Outputs in Safe Mode Analog-Front-End- Pulse Width
i 3)6)
Motor control (Overspeed, Overcurrent detection ...) Controller (AFECO0/1) Modulation (PWM)
Puts the PWM Outputs in Safe Mode
(Overspeed detection through TIMER Timer Counter (TC)
Quadrature Decoder) ®)©)
General- Puts the PWM Outputs in Safe Mode (General
purpose, motor @) PIO
Purpose Fault Inputs)
control
Image Low-costimage | PC is embedded in PIO (Capture Image from
_ o) PIO DMA
capture sensor Sensor directly to System Memory)

30 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

Table 8-1. Real-time Event Mapping List (Continued)
Function Application Description Event Source Event Destination
PIO (ADTRG)
) o TC Output 0
General-purpose | Trigger source selection in AFEC © co
T utput 1
Meagurement AFEC
trigger TC Output 2
ADC-PWM synchronization (% PWM Event Line 0
Motor control) o
Trigger source selection in AFEC © PWM Event Line 1
PWM Output

Compare Line 0 TC Input (A/B) 0

Delay Propagation delay of external components (10s, PWM Output
measurement Motor control power transistor bridge driver, etc.) (2 Compare Line 1 TC Input (A/B) 1
PWM Output
Compare Line 2 TC Input (A/B) 2
PIO DATRG
TC Output O
. TC Output 1 Digital-Analog
Cotrrliver;on General-purpose | Trigger source selection in DACC %) Converter
99 TC Output 2 Controller (DACC)
PWM Event Line 0 ‘9
PWM Event Line 1 1°)
Notes: 1. Referto “Low-power Tamper Detection and Anti-Tampering” in Section 18. “Supply Controller (SUPC)” and “General
Purpose Backup Register x” in Section 19. “General Purpose Backup Registers (GPBR)”.

2. Refer to “Main Clock Failure Detector” in Section 29. “Power Management Controller (PMC)".

3. Refer to “Fault Inputs” and “Fault Protection” in “Pulse Width Modulation Controller (PWM)” .

4. Refer to “Fault Mode” in “Analog Comparator Controller (ACC)” .

5. Refer to “Fault Output” in Section 43. “Analog Front-End Controller (AFEC)”.

6. Refer to “Fault Mode” in “Timer Counter (TC)".

7. Refer to “Parallel Capture Mode” in Section 33. “Parallel Input/Output Controller (P10)".

8. Refer to “Conversion Triggers” and the AFEC Mode Register (AFEC_MR) in Section 43. “Analog Front-End Controller

(AFEC)".
9. Refer to PWM Comparison Value Register (PWM_CMPV) in Section 39. “Pulse Width Modulation Controller (PWM)".
10. Refer to “PWM Comparison Units” and “PWM Event Lines” in Section 39. “Pulse Width Modulation Controller (PWM)”.
11. Refer to “Comparator” in Section 39. “Pulse Width Modulation Controller (PWM)”.
12. Refer to “Synchronization with PWM” in Section 38. “Timer Counter (TC)".
13. Refer to DACC Trigger Register (DACC_TRIGR) in Section 44. “Digital-to-Analog Converter Controller (DACC)".

/ItmeL SAMAE Series [DATASHEET] 31

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

9. System Controller

9.1 System Controller and Peripherals Mapping
Please refer to Figure 7-1 "SAMA4E Product Mapping”.

9.2 Power-on-Reset, Brownout and Supply Monitor

The SAM4E device embeds three features to monitor, warn and/or reset the chip:
e Power-on-Reset on VDDIO
e Brownout Detector on VDDCORE
e Supply Monitor on VDDIO

9.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power
down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to Section
46. “SAMAE Electrical Characteristics”.

9.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the
Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or
sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the
Section 18. “Supply Controller (SUPC)” and Section 46. “SAM4E Electrical Characteristics”.

9.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully
programmable with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled by the Supply Controller
(SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to
2048. For more information, refer to the Section 18. “Supply Controller (SUPC)” and Section 46. “SAMA4E Electrical
Characteristics”.

32 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10. Peripherals

10.1 Peripheral Identifiers

Table 10-1 defines the Peripheral Identifiers of the SAMA4E device. A peripheral identifier is required for the control
of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the
Power Management Controller.

Table 10-1. Peripheral Identifiers
Instance NVIC PMC
Instance ID Name Interrupt | Clock Control | Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real-time Clock
3 RTT X Real-time Timer
4 RVSV\?\/-II;/T X Watchdog/Dual Watchdog Timer
5 PMC X Power Management Controller
6 EEFC Enhanced Embedded Flash Controller
7 UARTO X Universal Asynchronous Receiver Transmitter O
8 SMC X Static Memory Controller
9 PIOA X X Parallel 1/0O Controller A
10 PIOB X X Parallel 1/0O Controller B
11 PIOC X X Parallel 1/0 Controller C
12 PIOD X X Parallel I/O Controller D
13 PIOE X X Parallel /O Controller E
14 USARTO X X Universal Synchronous Asynchronous Receiver Transmitter O
15 USART1 X X Universal Synchronous Asynchronous Receiver Transmitter 1
16 HSMCI X X Multimedia Card Interface
17 TWIO X X Two-wire Interface O
18 TWIL1 X X Two-wire Interface 1
19 SPI X X Serial Peripheral Interface
20 DMAC X X DMA Controller
21 TCO X X Timer/Counter Channel 0
22 TC1 X X Timer/Counter Channel 1
23 TC2 X X Timer/Counter Channel 2
24 TC3 X X Timer/Counter Channel 3
25 TC4 X X Timer/Counter Channel 4
26 TC5 X X Timer/Counter Channel 5
27 TC6 X X Timer/Counter Channel 6
28 TC7 X X Timer/Counter Channel 7

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33

Table 10-1. Peripheral Identifiers (Continued)

Instance NVIC PMC
Instance ID Name Interrupt | Clock Control | Instance Description
29 TC8 X X Timer/Counter Channel 8
30 AFECO X X Analog Front End Controller O
31 AFEC1 X X Analog Front End Controller 1
32 DACC X X Digital to Analog Converter Controller
33 ACC X X Analog Comparator Controller
34 ARM X FPU signals: FPIXC, FPOFC, FPUFC, FPIOC, FPDZC, FPIDC, FPIXC
35 UDP X X USB Device Port
36 PWM X X Pulse Width Modulation Controller
37 CANO X X Controller Area Network 0
38 CAN1 X X Controller Area Network 1
39 AES X X Advanced Encryption Standard
40 Reserved
41 Reserved
42 Reserved
43 Reserved
44 GMAC X X Ethernet MAC
45 UART1 X X Universal Asynchronous Receiver Transmitter 1
46 Reserved

34 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2 Peripheral Signal Multiplexing on I/O Lines
The SAMAE device features five PIO Controllers on 144-pin versions (PIOA, PIOB, PIOC, PIOD and PIOE) that
multiplex the I/O lines of the peripheral set.

The SAM4E PIO Controllers control up to 32 lines. Each line can be assigned to one of three peripheral functions:
A, B or C. The multiplexing tables in the following paragraphs define how the 1/O lines of the peripherals A, B and
C are multiplexed on the PIO Controllers. The column “Comments” has been inserted in this table for the user’s
own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

SAMA4E Series [DATASHEET] 35

A t ' I IeL Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.1 PIO Controller A Multiplexing

Table 10-2. Multiplexing on PIO Controller A (PIOA)

/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function
PAQ PWMHO TIOAO A17 WKUPQ®W
PAL PWMH1 TIOBO A18 WKUP1®
PA2 PWMH2 DATRG wKup2®
PA3 TWDO NPCS3
PA4 TWCKO TCLKO WKUP3®W
PAS5 NPCS3 URXD1 WKUP4®W
PA6 PCKO UTXD1
PA7 PWMH3 XIN32®?
PAS8 AFEO_ADTRG WKUP5®) XouT32?
PA9 URXDO NPCS1 PWMFIO wWKUP6®
PA10 UTXDO NPCS2
PA11 NPCS0 PWMHO WKUP7W
PA12 MISO PWMH1
PA13 MOSI PWMH2
PA14 SPCK PWMH3 wKupg®
PA15 TIOA1 PWML3 WKUP14/PIODCEN1®
PA16 TIOB1 PWML2 WKUP15/PIODCEN2®
PA17 PCK1 PWMH3 AFEO_ADO“
PA18 PCK2 Al4 AFEO_AD1¢)
PA19 PWMLO A15 AFEO_AD2/WKUP9®)
PA20 PWML1 Al6 AFEO_AD3/WKUP10®
PA21 RXD1 PCK1 AFE1_AD2"
PA22 TXD1 NPCS3 NCS2 AFE1_AD3"
PA23 SCK1 PWMHO A19 PIODCCLK®
PA24 RTS1 PWMH1 A20 PIODCO®)
PA25 CTS1 PWMH2 A23 PIODC1®
PA26 DCD1 TIOA2 MCDA2 PIODC2®)
PA27 DTR1 TIOB2 MCDA3 PIODC3®
PA28 DSR1 TCLK1 MCCDA PIODC4®)
PA29 RI1 TCLK2 MCCK PIODC5®)
PA30 PWML2 NPCS2 MCDAO WKUP11/PIODC6®)
PA31 NPCS1 PCK2 MCDA1 PIODC7®)

Notes: 1. WKUPx can be used if PIO controller defines the 1/O line as "input".
2. Refer to Section 6.2 “System 1/O Lines".
3. PIODCENXx/PIODCXx has priority over WKUPx. Refer to Section 33.5.14 “Parallel Capture Mode”".
4. To select this extra function, refer to Section 43.5.1 “I/O Lines”.

36 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5. Analog input has priority over WKUPX pin.
6. To select this extra function, refer to Section 33.5.14 “Parallel Capture Mode”.

AtmeL SAMAE Series [DATASHEET] 37

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.2 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B (PIOB)

I/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function
PBO PWMHO RXDO AFEO_AD4/RTCOUTO™
PB1 PWMH1 TXDO AFEO_AD5/RTCOUT1®
PB2 CANTXO0 NPCS2 CTSO AFE1_ADO/WKUP12?
PB3 CANRXO PCK2 RTSO AFE1_AD1®
PB4 TWD1 PWMH2 TDI®)
PB5 TWCK1 PWMLO WKUP13® TDO/TRACESWO®)
PB6 TMS/SWDIO®)
PB7 TCK/SWCLK®
PBS XouT®
PB9 XIN®
PB10 DDM
PB11 DDP
PB12 PWML1 ERASE®
PB13 PWML2 PCKO SCKO DACO®)
PB14 NPCS1 PWMH3 DAC1®

Notes: 1. Analog input has priority over RTCOUTX pin. See Section 15.5.8 “Waveform Generation”.
Analog input has priority over WKUPX pin.

To select this extra function, refer to Section 43.5.1 “I/O Lines”.

WKUPXx can be used if PIO controller defines the I/O line as "input".

Refer to Section 6.2 “System 1/O Lines”.

DACO is selected when DACC_CHER.CHO is set. DAC1 is selected when DACC_CHER.CH1 is set. See Section 44.7.3
“DACC Channel Enable Register”.

o g M wN

38 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.3 PIO Controller C Multiplexing

Table 10-4. Multiplexing on PIO Controller C (PIOC)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function
PCO DO PWMLO AFEQ0_AD14%"
PC1 D1 PWML1 AFE1_AD4®M
PC2 D2 PWML2 AFE1_AD5®
PC3 D3 PWML3 AFE1_AD6M
PC4 D4 NPCS1 AFE1_AD7®
PC5 D5 TIOA6
PC6 D6 TIOB6
PC7 D7 TCLK6
PC8 NWE TIOA7
PC9 NANDOE TIOB7
PC10 NANDWE TCLK7
PC11 NRD TIOAS
PC12 NCS3 TIOBS CANRX1 AFEO0_AD8™
PC13 NWAIT PWMLO AFEO_AD6"
PC14 NCSO0 TCLK8
PC15 NCS1 PWML1 CANTX1 AFEO0_AD7®
PC16 A21/NANDALE
PC17 A22/NANDCLE
PC18 A0 PWMHO
PC19 Al PWMH1
PC20 A2 PWMH2
PC21 A3 PWMH3
pPC22 A4 PWML3
PC23 A5 TIOA3
PC24 A6 TIOB3
PC25 A7 TCLK3
PC26 A8 TIOA4 AFEO_AD12%
PC27 A9 TIOB4 AFEO_AD13"
PC28 A10 TCLK4
PC29 All TIOA5 AFEO_AD9®
PC30 Al2 TIOB5 AFEO_AD10™"
PC31 Al13 TCLK5 AFEO0_AD11Y

Notes: 1. To select this extra function, refer to Section 43.5.1 “I/O Lines”.

Atmel

SAMA4E Series [DATASHEET] 39

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.4 PIO Controller D Multiplexing

Table 10-5. Multiplexing on PIO Controller D (PIOD)

/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function
PDO GTXCK
PD1 GTXEN
PD2 GTXO0
PD3 GTX1
PD4 GRXDV
PD5 GRXO0
PD6 GRX1
PD7 GRXER
PD8 GMDC
PD9 GMDIO
PD10 GCRS
PD11 GRX2
PD12 GRX3
PD13 GCOL
PD14 GRXCK
PD15 GTX2
PD16 GTX3
PD17 GTXER
PD18 NCS1
PD19 NCS3
PD20 PWMHO
PD21 PWMH1
PD22 PWMH2
PD23 PWMH3
PD24 PWMLO
PD25 PWML1
PD26 PWML2
PD27 PWML3
PD28
PD29
PD30
PD31

40 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.5 PIO Controller E Multiplexing

Table 10-6. Multiplexing on PIO Controller E (PIOE)

I/0 Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments
PEO 144-pin version
PE1 144-pin version
PE2 144-pin version
PE3 144-pin version
PE4 144-pin version
PES5 144-pin version

/ItmeL SAMAE Series [DATASHEET] 41
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11. Cortex-M4 processor

11.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt
handling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core,
system and memories, ultra-low power consumption with integrated sleep modes, and platform security
robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power
efficiency through an efficient instruction set and extensively optimized design, providing high-end processing
hardware including IEEE754-compliant single-precision floating-point computation, a range of single-cycle and
SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware
division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug
capabilities. The Cortex-M4 processor implements a version of the Thumb® instruction set based on Thumb-2
technology, ensuring high code density and reduced program memory requirements. The Cortex-M4 instruction
set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of
8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt
performance. The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels.
The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs),
dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the
ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in
assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces
the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

11.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables
faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task
basis. Such requirements are becoming critical in many embedded applications such as automotive.

11.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of
the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is
ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints
and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial
Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information
through a single pin.

42 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers
can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the
CODE memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be
patched if a small programmable memory, for example flash, is available in the device. During initialization, the
application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required,
the application programs the FPB to remap a number of addresses. When those addresses are accessed, the
accesses are redirected to a remap table specified in the FPB configuration, which means the program in the non-
modifiable ROM can be patched.

11.2 Embedded Characteristics

Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU

Code-patch ability for ROM system updates

Power control optimization of system components

Integrated sleep modes for low power consumption

Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications

Extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing,
and code profiling.

11.3 Block Diagram

Figure 11-1. Typical Cortex-M4F Implementation

Cortex-M4F
Processor FPU
NVIC (&P
Processor
Core
Debug Memo Serial
44— Access ory Wire P
Port Protection Unit Viewer
Flash Data
Patch Watchpoints|
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
v v
SAMA4E Series [DATASHEET)] 43
Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4 Cortex-M4 Models

11.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

11.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.
e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception
processing.
The privilege levels for software execution are:
e Unprivileged
The software:
— Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
— Cannot access the System Timer, NVIC, or System Control Block
— Might have a restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at
the privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see
“Control Register” . In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

11.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked
item in memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then
writes the item to the new memory location. The processor implements two stacks, the main stack and the process
stack, with a pointer for each held in independent registers, see “Stack Pointer” .

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack,
see “Control Register” .

In Handler mode, the processor always uses the main stack.
The options for processor operations are:

Table 11-1. Summary of processor mode, execution privilege level, and stack use options
Processor Privilege Level for
Mode Used to Execute Software Execution Stack Used
Thread Applications Privileged or unprivileged® | Main stack or process stack®
Handler Exception handlers Always privileged Main stack

Note: 1. See “Control Register”.

44 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.3 Core Registers
Figure 11-2. Processor Core Registers
e N
RO
R1
R2
R3
Low registers
R4
R5
R6 General-purpose registers
R7
>_
R8
R9
High registers R10
R11
R12
. N— —
Stack Pointer SP (R13) PsP* || wmsP* *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program status register
PRIMASK
FAULTMASK Exception mask registers Special registers
BASEPRI
CONTROL CONTROL register
Table 11-2. Core Processor Registers
Register Name Access® Required Privilege® Reset
General-purpose registers RO-R12 Read/Write Either Unknown
Stack Pointer MSP Read/Write Privileged See description
Stack Pointer PSP Read/Write Either Unknown
Link Register LR Read/Write Either OXFFFFFFFF
Program Counter PC Read/Write Either See description
Program Status Register PSR Read/Write Privileged 0x01000000
Application Program Status Register APSR Read/Write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read/Write Privileged 0x00000000
Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000
Control Register CONTROL Read/Write Privileged 0x00000000

Notes:

2. An entry of Either means privileged and unprivileged software can access the register.

Atmel

1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45

11.4.1.4 General-purpose Registers
RO0-R12 are 32-bit general-purpose registers for data operations.

11.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer to
use:

e 0= Main Stack Pointer (MSP). This is the reset value.
e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

11.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor loads the LR value OXFFFFFFFF.

11.41.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads
the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the
EPSR T-bit at reset and must be 1.

46 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.41.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N | Zz | C \% | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:

« Application Program Status Register (APSR)

* Interrupt Program Status Register (IPSR)
» Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:

* Read of all the registers using PSR with the MRS instruction
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvqg with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read/Write™® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read/Write™ APSR and IPSR
EAPSR Read/Write®® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

Atmel

SAMA4E Series [DATASHEET] 47

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

I N I z [¢c v [| - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

* N: Negative Flag
0: Operation result was positive, zero, greater than, or equal
1: Operation result was negative or less than.

e Z: Zero Flag
0: Operation result was not zero
1: Operation result was zero.

e C: Carry or Borrow Flag

Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit
1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

* V: Overflow Flag
0: Operation did not result in an overflow
1: Operation resulted in an overflow.

¢ Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

* GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

48 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

49 = IRQ46

See “Exception Types” for more information.

/ItmeL SAMAE Series [DATASHEET] 49

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-
ible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to
write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR
value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return” .

* ICI: Interruptible-continuable Instruction

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction,
the processor:

— Stops the load multiple or store multiple instruction operation temporarily

— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

— Returns to the register pointed to by bits[15:12]

— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional.
The conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more
information.

e T. Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

50 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.12 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they
might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the
value of PRIMASK or FAULTMASK. See “MRS” , “MSR” , and “CPS” for more information.

/It L SAMAE Series [DATASHEET] 51
m e Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.13 Priority Mask Register

Name: PRIMASK
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

¢ PRIMASK
0: No effect
1: Prevents the activation of all exceptions with a configurable priority.

52 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.14 Fault Mask Register

Name: FAULTMASK
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

*+ FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

/ItmeL SAMAE Series [DATASHEET] 53

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.15 Base Priority Mask Register

Name: BASEPRI
Access: Read/Write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it
prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

* BASEPRI

Priority mask bits:

0x0000: No effect

Nonzero: Defines the base priority for exception processing

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this
field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that
higher priority field values correspond to lower exception priorities.

54 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.16 Control Register

Name: CONTROL

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FPCA | SPSEL | nPRIV |

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

* FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:

0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

» SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception
return.

e nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:
0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control
Register when in Handler mode. The exception entry and return mechanisms update the Control Register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and
exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
» Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
* Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 11-10.

/ItmeL SAMAE Series [DATASHEET] 55

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures
that instructions after the ISB execute using the new stack pointer. See “ISB” .

11.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry”
and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more
information.

11.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private

Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for
more information.

11.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
— Access peripheral registers
— Define exception vectors
e The names of:
— The registers of the core peripherals
— The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural
short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 11.5.3 "Power Management Programming Hints”
e Section 11.6.2 "CMSIS Functions”

e Section 11.8.2.1 "NVIC Programming Hints”.

56 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding
features. The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 11-3. Memory Map

OXFFFFFFFF
Vendor-specific 511 MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpue;rlpheral 1.0 MB
0xEO000 0000
Ox DFFFFFFF
External device 1.0 GB
0xA0000000
OX9FFFFFFF
32 MB Bit-band alias
0x60000000
0x42000000 OX5FFFFFFF
Ox400FFFFF — Peripheral 0.5GB
it-band region
0x40000000 0x40000000
O0x23FFFFFF Ox3FFFFFFF
32 MB Bit-band alias SRAM 0.56B
0x20000000
0x22000000 Ox1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000 L MB Bitband region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit
data, see “Bit-banding” .

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,
refer to the Memories section of the datasheet.

11.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

/ItmeL SAMAE Series [DATASHEET] 57

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Memory Types

e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.

e Device
The processor preserves transaction order relative to other transactions to Device or Strongly-ordered
memory.

e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can
buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes
e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in
a system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data
coherency between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

11.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not
guarantee that the order in which the accesses complete matches the program order of the instructions, providing
this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on
two memory accesses completing in program order, the software must insert a memory barrier instruction between
the memory access instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered
memory. For two memory access instructions Al and A2, if A1 occurs before A2 in program order, the ordering of
the memory accesses is described below.

Table 11-3. Ordering of the Memory Accesses Caused by Two Instructions
A2 Device Access
Strongly-

Normal Non- ordered
Al Access shareable Shareable Access
Normal Access - - - —
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <

Where:

<

58 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Means that the memory system does not guarantee the ordering of the accesses.

Means that accesses are observed in program order, that is, Al is always observed
before A2.

Atmel

11.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

Table 11-4. Memory Access Behavior

Memory
Address Range Memory Region Type XN | Description
0X00000000—OX1EEFEEFE | Code Normal® _ Executable region for program code. Data can also be

put here.

Executable region for data. Code can also be put here.
0x20000000—-0x3FFFFFFF | SRAM Normal® — | This region includes bit band and bit band alias areas,
see Table 11-6.

This region includes bit band and bit band alias areas,

0x40000000-0x5FFFFFFF | Peripheral Device® | XN see Table 11.6.

0x60000000-0x9FFFFFFF | External RAM Normal ™ - Executable region for data

0xA0000000-0xDFFFFFFF | External device Device™ XN | External Device memory

OXE0000000—OXEQOFFFFE | Private Peripheral Bus f:g;r;gg’[l) XN IgilstrﬁggfgLEC'”des the NVIC, system timer, and system
OXE0100000-0XFFFFFFFF | Reserved Device®™ | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs
always use the Code region. This is because the processor has separate buses that enable instruction fetches and
data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see
“Memory Protection Unit (MPU)” .

Additional Memory Access Constraints For Caches and Shared Memory

When a system includes caches or shared memory, some memory regions have additional access constraints,
and some regions are subdivided, as Table 11-5 shows.

Table 11-5. Memory Region Shareability and Cache Policies

Address Range Memory Region Memory Type Shareability Cache Policy
0x00000000—-0x1FFFFFFF Code Normal ™ - WT®
0x20000000—-0x3FFFFFFF SRAM Normal ™ - WBWA®
0x40000000—0Xx5FFFFFFF Peripheral Device™® - -
0x60000000—0x7FFFFFFF WBWA®

External RAM Normal® -
0x80000000—0x9FFFFFFF WT®
0xA0000000—-0xBFFFFFFF Shareable™

External device Device™® -
0xC0000000-0XDFFFFFFF Non-shareable ")
0xE0000000—0XEOOFFFFF g[:\;ate Peripheral Strongly-ordered™® Shareable™ -
OXE0100000—~0XFFFFFFFF Vendor-specific Device ¥ - -

device

Notes: 1. See “Memory Regions, Types and Attributes” for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary” for more information.

/ItmeL SAMAE Series [DATASHEET] 59

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Instruction Prefetch and Branch Prediction
The Cortex-M4 processor:
e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

11.4.2.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e The processor has multiple bus interfaces
e Memory or devices in the memory map have different wait states
e Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the
order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include
memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:
DMB
The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before
subsequent memory transactions. See “DMB” .
DSB
The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete
before subsequent instructions execute. See “DSB” .
ISB
The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See “ISB” .
MPU Programming
Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

11.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band
regions occupy the lowest 1 MB of the SRAM and peripheral memory regions.
The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 11-6.

e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in
Table 11-7.

Table 11-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

Direct accesses to this memory range behave as SRAM memory accesses,

0x20000000-0x200FFFFF | SRAM bit-band region | e eqion is also bit-addressable through bit-band alias.

Data accesses to this region are remapped to bit-band region. A write
0x22000000-0x23FFFFFF | SRAM bit-band alias operation is performed as read-modify-write. Instruction accesses are not
remapped.

60 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 11-7. Peripheral Memory Bit-banding Regions

Address Range

Memory Region

Instruction and Data Accesses

0x40000000—-0x400FFFFF

Peripheral bit-band alias

Direct accesses to this memory range behave as peripheral memory
accesses, but this region is also bit-addressable through bit-band alias.

0x42000000—-0x43FFFFFF

Peripheral bit-band region

Data accesses to this region are remapped to bit-band region. A write
operation is performed as read-modify-write. Instruction accesses are not
permitted.

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-band

region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size of the
instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit _word_of fset

= (byte_offset x 32) + (bit_nunber x 4)

bit_word_addr = bit_band_base + bit_word_of fset

where:

e Bit word offset is the position of the target bit in the bit-band memory region.

Bit _word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bi t band_base is the starting address of the alias region.

Byt e_of f set is the number of the byte in the bit-band region that contains the targeted bit.

Bi t _nunber is the bit position, 0-7, of the targeted bit.

Figure 11-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-

band region:

e The alias word at 0x23FFFFEQO maps to bit[0] of the bit-band byte at 0x200FFFFF: Ox23FFFFEOQ =
0x22000000 + (OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at Ox200FFFFF: 0x23FFFFFC =
0x22000000 + (OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =
0x22000000 + (0*32) + (0*4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =
0x22000000+ (0*32) + (7*4).

Atmel

SAMA4E Series [DATASHEET] 61

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 11-4. Bit-band Mapping

32 MB alias region

I 0x23FFFFFC I O0x23FFFFF8 " Ox23FFFFF4 | Ox23FFFFFO | Ox23FFFFEC | Ox23FFFFE8 | Ox23FFFFE4 I 0x23FFFFEQ I

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008 0x22000004 I 0x22000000 I

1 MB SRAM bit-band region

‘76543210’765432107654321076543210

T T T 1 T
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I I I I

°
°

°

765432107654321076543210‘76543210’

UL UL U U
0x20000003 0x20000002 0x20000001 0x20000000
I I I I

Directly Accessing an Alias Region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-
band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O
writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF.
Writing 0x00 has the same effect as writing OxOE.

Reading a word in the alias region:
e (0x00000000 indicates that the targeted bit in the bit-band region is set to 0
e 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

Directly Accessing a Bit-band Region
“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band
regions.

11.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,
bytes 0-3 hold the first stored word, and bytes 4—7 hold the second stored word. “Little-endian Format” describes
how words of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and
the most significant byte at the highest-numbered byte. For example:

62 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 11-5. Little-endian Format

Memory Register
7 0
31 2423 16 15 8 7 0
Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 [msbyte

11.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking
mechanism that a thread or process can use to obtain exclusive access to a memory location. The software can
use them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:
e 0: ltindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

e 1:ltindicates that the thread or process did not gain exclusive access to the memory, and no write is
performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

e The word instructions LDREX and STREX

e The halfword instructions LDREXH and STREXH

e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location

4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The
software must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:
1. Use aLoad-Exclusive instruction to read from the semaphore address to check whether the semaphore is

free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore
address.
SAMAE Series [DATASHEET 63
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the
software has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process
might have claimed the semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:
e It executes a CLREX instruction
e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.
e An exception occurs. This means that the processor can resolve semaphore conflicts between different
threads.
In a multiprocessor implementation:
e Executing a CLREX instruction removes only the local exclusive access tag for the processor
e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX"” and “CLREX" .

11.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for
generation of these instructions:

Table 11-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uintl6_t LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t __ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__ldrex((vol atile char *) OxFF);
11.4.3 Exception Model
This section describes the exception model.
11431 Exception States
Each exception is in one of the following states:
Inactive

The exception is not active and not pending.

Pending
The exception is waiting to be serviced by the processor.

64 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.

Active

An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in
the active state.

Active and Pending
The exception is being serviced by the processor and there is a pending exception from the same source.

11.4.3.2 Exception Types
The exception types are:

Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.
When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset
is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

Non Maskable Interrupt (NMI)
A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest
priority exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.

Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have
higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU
or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.
This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is
disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory
transaction. This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
An undefined instruction

An illegal unaligned access

An invalid state on instruction execution

e An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:
e An unaligned address on word and halfword memory access
e A division by zero.

/ItmeL SAMAE Series [DATASHEET] 65

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications
can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context
switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate
a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the
processor.

Table 11-9. Properties of the Different Exception Types

Exception Vector Address

Number® Irqg Number® | Exception Type | Priority or Offset® Activation

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C —

4 -12 Memory Configurable® | 0x00000010 Synchronous

management fault

Synchronous when precise,

5 -11 Bus fault Configurable® | 0x00000014 asynchronous when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 SvCall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above | 0 and above Interrupt (IRQ) Configurable® | 0x00000040 and above® | Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .

See “Vector Table” for more information
See “System Handler Priority Registers”
See “Interrupt Priority Registers”
Increasing in steps of 4.

ok wbd

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.
Privileged software can disable the exceptions that Table 11-9 shows as having configurable priority, see:

e “System Handler Control and State Register”

e ‘“Interrupt Clear-enable Registers” .

66 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault

Handling” .

11.4.3.3 Exception Handlers

The processor handles exceptions using:
e Interrupt Service Routines (ISRs)

Interrupts IRQO to IRQ46 are the exceptions handled by ISRs.

e Fault Handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault

handlers.
e System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by

system handlers.

11.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. Figure 11-6 shows the order of the exception vectors in the vector table. The
least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 11-6. Vector Table

Exception number IRQ number
255 239
18 2
17 1
16 0
15 -1
14 -2

13
12
11 -5
10
9
8
7
6 -10
5 -1
4 -12
3 -13
2 -14
1

Offset

0x03FC

0x004C
0x0048
0x0044
0x0040
0x003C
0x0038

0x002C

0x0018
0x0014
0x0010
0x000C
0x0008
0x0004
0x0000

Vector

IRQ239

IRQ2

IRQ1

IRQO

SysTick

PendSV

Reserved

Reserved for Debug

SVCall

Reserved

Usage fault

Bus fault

Memory management fault

Hard fault

NMI

Reset

Initial SP value

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR
to relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80,

see “Vector Table Offset Register” .

Atmel

SAMA4E Series [DATASHEET] 67

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.35 Exception Priorities

As Table 11-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.
If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0.

For information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt

Priority Registers” .

Note: Configurable priority values are in the range 0—15. This means that the Reset, Hard fault, and NMI exceptions, with
fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has

higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number
takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is
processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority
exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not
preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

11.4.3.6 Interrupt Priority Grouping
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each
interrupt priority register entry into two fields:
e An upper field that defines the group priority
e Alower field that defines a subpriority within the group.
Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not
preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they
are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the
lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application
Interrupt and Reset Control Register” .

11.4.3.7 Exception Entry and Return
Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its
priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more
information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.
Return
This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced
e The completed exception handler was not handling a late-arriving exception.

68 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception Return” for more information.

Tail-chaining
This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending

exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see
“Exception Mask Registers” . An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point
state on exception entry. Figure 11-7 on page 70 shows the Cortex-M4 stack frame layout when floating-point
state is preserved on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 11-7 on page 70 shows this stack frame also.

/ItmeL SAMAE Series [DATASHEET] 69

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 11-7. Exception Stack Frame

| {aligner} ! Pre-IRQ top of stack

FPSCR
S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2

S1 . . h
L i l— Pre-IRQ top of stack
SO ! {aligner} 1« P
xPSR Decreasing xPSR

PC memory PC
R address R

R12 R12
R3 R3

R2 v R2
R1 R1

RO « IRQ top of stack RO - IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception

handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions
to load the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC
e An LDR instruction with the PC as the destination.
e A BX instruction using any register.

70 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16 A t I I I eL

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value
to detect when the processor has completed an exception handler. The lowest five bits of this value provide
information on the return stack and processor mode. Table 11-10 shows the EXC_RETURN values with a
description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the
processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 11-10. Exception Return Behavior

EXC_RETURNJ31:0] Description
Return to Handler mode, exception return uses non-floating-point state
OXFFFFFFFL from the MSP and execution uses MSP after return.
OXEEFEEFF9 Return_to Thread mode, exception return uses state from MSP and
execution uses MSP after return.
OXEFEEFEED Return_to Thread mode, exception return uses state from the PSP and
execution uses PSP after return.
Return to Handler mode, exception return uses floating-point-state from
OXFFFFFFEL MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from
OXFFFFFFED MSP and execution uses MSP after return.
OXEFEEFEED Return to Thread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

11.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:

e A bus error on:

— Aninstruction fetch or vector table load

— A data access

e Aninternally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 11-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information

about the fault status registers.

Table 11-11. Faults

Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”

Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -

on instruction access IACCvIoL®

on data access Memory DACCVIOL®

. . . management “MMFSR: Memory Management Fault Status

during exception stacking fault MSTKERR Subregister”

during exception unstacking MUNSTKERR

during lazy floating-point state preservation MLSPERR®)

Atmel

SAMA4E Series [DATASHEET] 71

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 11-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register
Bus error: - -

during exception stacking STKERR

during exception unstacking UNSTKERR

during instruction prefetch Bus fault IBUSERR

“BFSR: Bus Fault Status Subregister”

during lazy floating-point state preservation LSPERR®
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state INVSTATE

Usage fault “UFSR: Usage Fault Status Subregister”

Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with
ICI continuation.

3. Only present in a Cortex-M4F device

Fault Escalation and Hard Faults
All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority

Registers” . The software can disable the execution of the handlers for these faults, see “System Handler Control
and State Register” .

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and
the fault is described as escalated to hard fault. Escalation to hard fault occurs when:
e A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs
because a fault handler cannot preempt itself; it must have the same priority as the current priority level.
e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the
handler for the new fault cannot preempt the currently executing fault handler.
e An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.
e Afault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a
hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack
push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault
address register indicates the address accessed by the operation that caused the fault, as shown in Table 11-12.

72 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 11-12. Fault Status and Fault Address Registers
Status Register Address Register
Handler Name Name Register Description
Hard fault SCB_HFSR - “Hard Fault Status Register”
“MMFSR: Memory Management Fault Status Subregister”
Memory MMFSR SCB_MMFAR / J . E
management fault “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR)
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”
Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until
either:

e ltisreset
e An NMI occurs
e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup
state.

SAMA4E Series [DATASHEET] 73

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

11.5 Power Management
The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register” .

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep
mode.

11.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.
Therefore, the software must be able to put the processor back into sleep mode after such an event. A program
might have an idle loop to put the processor back to sleep mode.

11.5.11 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a
WHFI instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

11.5.1.2 Wait for Event
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event
register. When the processor executes a WFE instruction, it checks this register:
e Ifthe register is 0, the processor stops executing instructions and enters sleep mode
e If the register is 1, the processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See “WFE” for more information.

11.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception
handler, it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that
only require the processor to run when an exception occurs.

11.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

11.5.2.1 Wakeup from WFI or Sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception
entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an
interrupt arrives that is enabled and has a higher priority than the current exception priority, the processor wakes
up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information
about PRIMASK and FAULTMASK, see “Exception Mask Registers” .

11.5.2.2 Wakeup from WFE
The processor wakes up if:
e |t detects an exception with sufficient priority to cause an exception entry
e It detects an external event signal. See “External Event Input”
e In a multiprocessor system, another processor in the system executes an SEV instruction.

74 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more
information about the SCR, see “System Control Register” .

11.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the
processor from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter
sleep mode on a later WFE instruction. See “Wait for Event” for more information.

11.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void _ WE(void) // Wait for Event

void _ W (void) // Wait for Interrupt

/ItmeL SAMAE Series [DATASHEET] 75

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6 Cortex-M4 Instruction Set

11.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 11-13 lists the supported instructions.

Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant
Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 11-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C.V
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,CV
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #Isb, #width Bit Field Clear -

BFI Rd, Rn, #lsb, #width Bit Field Insert -

BIC, BICS {Rd.,} Rn, Op2 Bit Clear N,z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -
CBNz Rn, label Compare and Branch if Non Zero -

cBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,CV
CMP Rn, Op2 Compare N,Z,C\V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{!}, reglist Load Multiple registers, increment after -

76 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,Z,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,zZ,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,z,C
NOP - No Operation -
ORN, ORNS {Rd.} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDsSuUB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QsSuB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

77

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
QSuUB16 {Rd.,} Rn, Rm Saturating Subtract 16 -
QSuUBS8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,zZ,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C\V
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C\V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS8 {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁ'?BB: SS,\'\//IIII_‘:_II_B_I-_F Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?g Ssl\l\//llll__ﬁll__'rB'l-'r RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual
SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

78 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
gmgt_?g SSI\,\//IIIEJJII__'I?': {Rd,} Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
STM Rn{1}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{'}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [Rn] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

79

Table 11-13. Cortex-M4 Instructions (Continued)
Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIv {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g;_sbiig:rzzgul\lgultiply Accumulate Accumulate Long (32 x32+32+32), |
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS8 {Rd.,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd.,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd.,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSUBS {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
UsuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd.,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP E32 Sd, <Sm | #0.0> ;Sr(])(;nzp;roe two floating-point registers, or one floating-point register FPSCR
VONPERZ | sa.<omisoo- | CAMPa udfosingsont egser, or one st pan g | g
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -

80 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{'}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate —
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C.\V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{'}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -
SAMA4E Series [DATASHEET)] 81

Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can
generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler
does not support an appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly
access:

Table 11-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV/(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR
instructions:

Table 11-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function
Read uint32_t _ get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get_ BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get. CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get_ MSP (void)
MSP
Write void __set_MSP (uint32_t TopOfMainStack)
S Read uint32_t __get_ PSP (void)
PSP
Write void __set PSP (uint32_t TopOfProcStack)
82 SAMAE Series [DATASHEET] AtmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.3 Instruction Descriptions

11.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions
act on the operands and often store the result in a destination register. When there is a destination register in the
instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

11.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands
or destination register can be used. See instruction descriptions for more information.

Note: Bit[O] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution,
because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

11.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the
descriptions of the syntax of each instruction.
Operand?2 can be a:

e “Constant”

e “Register with Optional Shift”

Constant

Specify an Operand2 constant in the form:
#const ant

where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO00XY
e Any constant of the form 0xXY00XY00
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in
the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be
produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other
constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant
that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the
equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand? register in the form:

Rm{, shift}
where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
SAM4E Series [DATASHEET 83
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

ASR #n arithmetic shift right n bits, 1 < n < 32.
LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift also
updates the carry flag when used with certain instructions. For information on the shift operations and how they
affect the carry flag, see “Flexible Second Operand” .

11.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.
Register shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with
shift. See “Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs.
Register shift operations update the carry flag except when the specified shift length is 0. The following
subsections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is
the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the
result. See Figure 11-8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded
towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.
Figure 11-8. ASR#3

Carry

31 51413210 |—:|
SEE [T

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-
hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 11-9.

84 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an
unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to O.

Figure 11-9. LSR#3

[
000 Flag
vV VY

31 [Sl;%—i D

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand
32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 11-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an
unsigned integer or a two’'s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,
MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-
n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to O.

Figure 11-10. LSL #3

« o —

31 5(4

Cary T T T i

[I
w
N ¢O—
-
o +O—

=

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See
Figure 11-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register
Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated
to bit[31] of Rm.

e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

/ItmeL SAMAE Series [DATASHEET] 85

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.3.5

11.6.3.6

86

Figure 11-11. ROR #3

Carry

3 || e

31 AEES Sﬁ;; D

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into
bit[31] of the result. See Figure 11-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.
Figure 11-12. RRX

Carry
Flag

31(30 1{0

T |

Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word
access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.
The Cortex-M4 processor supports unaligned access only for the following instructions:

e |DR,LDRT

e LDRH, LDRHT

e |DRSH, LDRSHT

e STR, STRT

e STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and
therefore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not
support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.
To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control
Register to trap all unaligned accesses, see “Configuration and Control Register” .

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is
represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the
required offset from the label and the address of the current instruction. If the offset is too big, the assembler
produces an error.

e For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4
bytes.

SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

e For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4
bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a
number, or an expression of the form [PC, #number].

11.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status
Register (APSR) according to the result of the operation, see “Application Program Status Register” . Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is
preserved. See the instruction descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 11-16 for a list of the suffixes to add to instructions to make them conditional instructions.
The condition code suffix enables the processor to test a condition based on the flags. If the condition test of a
conditional instruction fails, the instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for

more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might
automatically insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:
e “Condition Flags”
e “Condition Code Suffixes” .

Condition Flags
The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
4 Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\Y, Set to 1 when the operation caused overflow, cleared to O otherwise.

For more information about the APSR, see “Program Status Register” .

A carry occurs:

e If the result of an addition is greater than or equal to 232

e If the result of a subtraction is positive or zero

e Asthe result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation
been performed at infinite precision, for example:

e |[f adding two negative values results in a positive value

e If adding two positive values results in a negative value

e |If subtracting a positive value from a negative value generates a positive value

/ItmeL SAMAE Series [DATASHEET] 87

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

88

e If subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more

information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if
the condition code flags in the APSR meet the specified condition. Table 11-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.
Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 11-16. Condition Code Suffixes
Suffix Flags Meaning
EQ zZ=1 Equal
NE Z=0 Not equal
CSorHS c=1 Higher or same, unsigned >
CCorlLO C=0 Lower, unsigned <
Ml N=1 Negative
PL N=0 Positive or zero
VS V=1 Overflow
vC V=0 No overflow
HI C=1landZ=0 Higher, unsigned >
LS C=0o0rz=1 Lower or same, unsigned <
GE N=V Greater than or equal, signed >
LT N!=V Less than, signed <
GT Z=0and N=V Greater than, signed >
LE Z=1landN!=V Less than or equal, signed <
AL Can have any value Always. This is the default when no suffix is specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO =
ABS(R1).

MOVS RO, R1 ; RO = Rl, setting flags
T M ; I Tinstruction for the negative condition
RSBM RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is
greater than R1 and R2 is greater than R3.

cwP RO, R1 ; Conmpare RO and R1, setting flags

ITT GT ; I Tinstruction for the two GI conditions

CVPGT R2, R3 ; If '"greater than', conpare R2 and R3, setting flags
MOVGT R4, R5 ; If still "greater than', do R4 = RS

SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

11.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the
operands and destination register specified. For some of these instructions, the user can force a specific
instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix
forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the

requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an instruction or
literal data, as in the case of branch instructions. This is because the assembler might not automatically generate the
right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any.

The example below shows instructions with the instruction width suffix.

BCS. W | abel ; creates a 32-bit instruction even for a short
; branch

ADDS. WRO, RO, Rl ; creates a 32-bit instruction even though the sane
; operation can be done by a 16-bit instruction

11.6.4 Memory Access Instructions

The table below shows the memory access instructions.

Table 11-17. Memory Access Instructions
Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX{type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

89

11.6.4.1 ADR
Load PC-relative address.

Syntax

ADR{ cond} Rd, | abel
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination
register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated
is set to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-
aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
ADR Rl, Text Message ; Wite address value of a location |abelled as
; Text Message to R1

90 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} R, [Rn {, #offset}] ; i mredi ate of fset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; imredi ate offset, two words
opD{cond} R, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} R, Rt2, [Rn], #offset ; post-indexed, two words
where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.
cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

Atmel

SAMA4E Series [DATASHEET] 91

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!
Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for
this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 11-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed
Word, halfword, signed
halfword, byte, or signed byte -255 to 4095 -255 to 255 -255 to 255
Two words multiple of 4 in the multiple of 4 in the multiple of 4 in the
range -1020 to 1020 | range -1020 to 1020 | range -1020 to 1020
Restrictions

For load instructions:
e Rtcan be SP or PC for word loads only
e Rt must be different from Rt2 for two-word loads
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution
e A branch occurs to the address created by changing bit[0] of the loaded value to 0
e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:
e Rt can be SP for word stores only
e Rtmustnot be PC
e Rnmustnot be PC
e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
Condition Flags

These instructions do not change the flags.

92 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples
LDR R8,
LDRNE R2,
STR R2,
STRH R3,
LDRD R8,
STRD RO,

[R10]
[R5, #960] !

[R9, #const - st ruc]

[R4], #4
RO, [R3, #0x20]
Rl, [R8], #- 16

Loads R8 fromthe address in R10.

Loads (conditionally) R2 froma word

960 bytes above the address in R5, and
increments R5 by 960.

const-struc is an expression eval uating
to a constant in the range 0-4095.

Store R3 as halfword data into address in
R4, then increnent R4 by 4

Load R8 froma word 32 bytes above the
address in R3, and load RO froma word 36
byt es above the address in R3

Store RO to address in R8, and store Rl to
a word 4 bytes above the address in RS,

Atmel

; and then decrenment R8 by 16.

LDR and STR, Register Offset
Load and Store with register offset.

Syntax

op{type}{cond} R, [Rn, Rm{, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the

register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either

be signed or unsigned. See “Address Alignment” .
Restrictions

In these instructions:
e Rn must not be PC

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

93

e Rm must not be SP and must not be PC
e Rtcan be SP only for word loads and word stores
e Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and Rl
LDRSB RO, [R5, Rl, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two times R1, sign extended it
; to a word value and put it in RO
STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
; and four times R2

94 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.4 LDR and STR, Unprivileged
Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immedi ate of fset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate
offset, see “LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged
access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn must not be PC
e Rt must not be SP and must not be PC.

Condition Flags
These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

/ItmeL SAMAE Series [DATASHEET] 95

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.5 LDR, PC-relative
Load register from memory.

Syntax
LDR{type}{cond} Rt, | abel
LDRD{ cond} Rt, Rt2, |abel ; Load two words
where:
type is one of:
B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label
or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between
label and the PC.

Table 11-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .
Restrictions
In these instructions:

e Rtcanbe SP or PC only for word loads

e Rt2 must not be SP and must not be PC

e Rt must be different from Rt2.

96 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e

LDRSB R7, |ocal data ; Load a byte value froman address | abelled

; as localdata, sign extend it to a word
; value, and put it in R7

11.6.4.6 LDM and STM
Load and Store Multiple registers.

Syntax

op{addr_node}{cond} Rn{!}, reglist
where:
op is one of;

LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution” .
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I'is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks
Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in
order of increasing register numbers, with the lowest numbered register using the lowest memory address and the

/ItmeL SAMAE Series [DATASHEET] 97

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4
* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals
ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of
decreasing register numbers, with the highest numbered register using the highest memory address and the
lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *
(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.
Restrictions

In these instructions:

Rn must not be PC

reglist must not contain SP

In any STM instruction, reglist must not contain PC

In any LDM instruction, reglist must not contain PC if it contains LR

e reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
LDM R8, { RO, R2, R9} ; LDMAis a synonymfor LDM
STMDB R1!, {R3-R6, R11, R12}

Incorrect Examples

STM R5!, {R5, R4, R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at |east one register in the |ist
98 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{ cond} regli st
POP{cond} regli st
where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions

In these instructions:
e reglist must not contain SP
e For the PUSH instruction, reglist must not contain PC
e For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
PUSH { RO, R4- R7}
PUSH {R2, LR}
POP {RO, R10, PC}
SAM4E Series [DATASHEET 99
Atmel [:

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.8 LDREX and STREX
Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{ cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{ cond} Rt, [Rn]

STREXH{ cond} Rd, Rt, [Rn]
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes O to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

Do not use PC

Do not use SP for Rd and Rt

For STREX, Rd must be different from both Rt and Rn

The value of offset must be a multiple of four in the range 0-1020.

Condition Flags
These instructions do not change the flags.

Examples
MoV R1, #0Ox1 ; Initialize the ‘lock taken' value try
LDREX RO, [LockAddr] ; Load the | ock val ue
cawP RO, #0 ; Is the lock free?

100 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

ITT EQ ; I'T instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claimthe |ock

CMPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again

;. Yes — we have the |ock

11.6.4.9 CLREX
Clear Exclusive.

Syntax
CLREX{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail
to perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception
occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization
operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX

SAMA4E Series [DATASHEET 101
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5 General Data Processing Instructions

The table below shows the data processing instructions.

Table 11-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLz Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADDS Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange

SHSAX Signed Halving Subtract and Add with Exchange
102 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 11-20. Data Processing Instructions (Continued)

Mnemonic Description
SHSUB16 Signed Halving Subtract 16
SHSUBS8 Signed Halving Subtract 8
SSUB16 Signed Subtract 16
SSUBS8 Signed Subtract 8
SuUB Subtract
SUBW Subtract
TEQ Test Equivalence
TST Test
UADD16 Unsigned Add 16
UADDS8 Unsigned Add 8
UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange
UHADD16 Unsigned Halving Add 16
UHADDS8 Unsigned Halving Add 8
UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 Unsigned Halving Subtract 16
UHSUBS Unsigned Halving Subtract 8
USADS8 Unsigned Sum of Absolute Differences
USADAS Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16
UsuBS8 Unsigned Subtract 8
/ItmeL SAMAE Series [DATASHEET] 103

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #inml2 ; ADD and SUB only
where:
op is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm12 is any value in the range 0—4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is
reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide
range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR” .

Note: ~ ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that uses
the imm12 operand.

Restrictions

In these instructions:
e Operand2 must not be SP and must not be PC
e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL
e Rncanbe SP only in ADD and SUB
e Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:
— The user must not specify the S suffix
— Rm must not be PC and must not be SP

104 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

— If the instruction is conditional, it must be the last instruction in the IT block

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only
with the additional restrictions:

— The user must not specify the S suffix
— The second operand must be a constant in the range 0 to 4095.

— Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to O0b00
before performing the calculation, making the base address for the calculation word-aligned.

— Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the
PC, because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If s is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if Cflag set and Z
ADCHI R11, RO, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit
integer contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the | east significant words
ADC R5, R1, R3 ; add the nost significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a
96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the
result in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, RO ; subtract the least significant words
SBCS R9, R2, R1 ; Subtract the middle words with carry
SBC R2, R8, Rl1 ; subtract the nost significant words with carry

SAMA4E Series [DATASHEET 105
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn
and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand?2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in
the value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If s is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BI C RO, R1, #Oxab
ORN R7, R11, R14, ROR #4

ORNS R7, R11l, R14, ASR #32

106 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm Rs
op{S}{cond} Rd, Rm #n
RRX{ S} {cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of
operation, see “Conditional Execution” .

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from O to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

the

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by

constant n or register Rs.
RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on

what result is generated by the different instructions, see “Shift Operations” .
Restrictions
Do not use SP and do not use PC.
Condition Flags
If s is specified:
e These instructions update the N and Z flags according to the result

e The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .

Examples
ASR R7, R8, #9 ; Arithnetic shift right by 9 bits
SLS Rl, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottombyte of R6
RRX R4, R5 ; Rotate right with extend.

Atmel SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

107

11.6.5.4 CLz
Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result
value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4, RO
CLZNE R2, R3

108 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.5 CMP and CMN
Compare and Compare Negative.

Syntax
CwP{cond} Rn, Operand2
CWMN{ cond} Rn, Operand2

where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,
but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction,
except that the result is discarded.

Restrictions
In these instructions:
e Donotuse PC
e Operand2 must not be SP.
Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
cwP R2, R9
CWN RO, #6400
CMPGT SP, R7, LSL #2

SAMA4E Series [DATASHEET 109
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{ S} {cond} Rd, Operand2
MOV{cond} Rd, #i nml6
MN{ S} {cond} Rd, Operand2

where:
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.
imm16 is any value in the range 0—65535.

Operation
The MOV instruction copies the value of Operand2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:
ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn!=0
LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{S}Hcond} Rd, Rm, #n is the preferred syntax for MOV{S}¥cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{SHcond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:
e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{SH{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{SHcond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs
e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and
places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:

e The second operand must be a register without shift
e The S suffix must not be specified.

When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX
instruction to branch for software portability to the ARM instruction set.

Condition Flags

110 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.

Examples

MOVS R11, #0x000B ; Wite value of 0x000B to
R11, flags get updated

MOV R1, #0xFAQ05 ; Wite value of OxFAO5 to
R1, flags are not updated

MOVS R10, R12 ; Wite value in R12 to R10,
flags get updated

MOV R3, #23 ; Wite value of 23 to R3

MOV R8, SP ; Wite value of stack pointer to R8

M/NS R2, #OxF ; Wite value of OxFFFFFFFO (bitw se inverse of OxF)

to the R2 and update fl ags.

SAMA4E Series [DATASHEET] 111

A t ' I IeL Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.7 MOVT

Move Top.
Syntax
MOVT{ cond} Rd, #i mi6
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm216 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write
does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #O0xF123 ; Wite OxF123 to upper hal fword of R3, |ower hal fword
; and APSR are unchanged.

112 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.8 REV, REV16, REVSH, and RBIT
Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data
e 32-bit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data
e 16-bit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data
e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
REV R3, R7; Reverse byte order of value in R7 and wite it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Hal fword
REVHS R3, R7; Reverse with Hi gher or Sane condition
RBIT R7, R8; Reverse bit order of value in R8 and wite the result to R7.

SAMA4E Series [DATASHEET 113
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SADD16 R1, RO ; Adds the halfwords in RO to the correspondi ng
; halfwords of Rl and wites to correspondi ng hal fword
; of RIL.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and
; Wwites to the corresponding byte in R4.

114 SAMAE Series [DATASHEET] /ltmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halfword results in the destination register.

The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of Rl
; and wites halved result to corresponding hal fword in
; R

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; wites halved result to corresponding byte in R4.

SAMA4E Series [DATASHEET 115
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.11 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:
SHASX Add and Subtract with Exchange and Halving.
SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.
3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.
The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit
to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to
the right causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2

; and wites halved result to top hal fword of R7

; Subtracts top hal fword of R2 from bottom hal fword of

; R4 and wites halved result to bottom hal fword of R7

SHSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword
; of R3 and wites halved result to top hal fword of RO
; Adds top hal fword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

116 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.12 SHSUB16 and SHSUBS8
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples
SHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; of RL and wites to correspondi ng hal fwrd of RL
SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,
; and wites to corresponding byte in R4.

SAMA4E Series [DATASHEET 117
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.13 SSUB16 and SSUB8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:
1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand
2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand
2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
SSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword
; of RL and wites to corresponding hal fword of Rl
SSUB8 R4, RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in
; RO, and wites to correspondi ng byte of R4.

118 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.
The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and

; Wwites to top hal fword of RO

; Subtracts bottom hal fword of R5 fromtop hal fword of R4

; and wites to bottom hal fword of RO

SSAX R7, R3, R2 ; Subtracts top hal fword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 with bottom hal fword of R2 and
; Wwites to top hal fword of R7.

SAMA4E Series [DATASHEET 119
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ cond} Rn, Operand2

where
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the
result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the
same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1
and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.
This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the
sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:

e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples

TST RO, #Ox3F8 ; Perform bitwi se AND of RO value to Ox3F8,
; APSR is updated but result is discarded

TEQEQ R10, RO ; Conditionally test if value in RLO is equal to
; value in RO, APSR is updated but result is discarded.

120 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.16 UADD16 and UADDS8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds hal fwords in RO to corresponding hal fword of R1,
; Wwites to corresponding hal fword of Rl
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites to corresponding byte in R4.

SAMA4E Series [DATASHEET 121
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom hal fword of R5 and
; Wwites to top hal fword of RO
; Subtracts bottom hal fword of R5 fromtop hal fword of RO
; and wites to bottom hal fword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 frombottom hal fword of R3
; and wites to bottom hal fword of R7
; Adds top hal fword of R3 to bottom hal fword of R2 and
; Wites to top hal fword of R7.

122 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds hal fwords in R7 to corresponding hal fword of R3
; and wites halved result to correspondi ng hal fword
; in R

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; Wwites halved result to corresponding byte in R4.

SAMA4E Series [DATASHEET 123
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:
UHASX Add and Subtract with Exchange and Halving.
UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

Writes the halfword result of the subtraction in the top halfword of the destination register.

Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

a s~ b

ok wbd

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top hal fword of R4 with bottom hal fword of R2
; and wites halved result to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R7 and wites halved result to bottom hal fword of R7

UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of
; R3 and wites halved result to top hal fword of RO
; Adds top halfword of R5 to bottom hal fword of R3 and
; wites halved result to bottom hal fword of RO.

124 SAMAE Series [DATASHEET] /Itmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.20 UHSUB16 and UHSUBS8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS8 Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The UHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UHSUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword of
; RL and wites halved result to corresponding halfword in Rl
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and
; wites halved result to corresponding byte in R4.

SAMA4E Series [DATASHEET 125
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the
values of the GE flags.

Syntax
SEL{<c>}{<g>} {<Rd>} <Rn>, <RnP
where:
c, g are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second
operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, Rl1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes fromRO or R3, based on GE
126 SAMAE Series [DATASHEET] /lt m eL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.22 USADS8
Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO fromcorrespondi ng byte of R4
; adds the differences and wites to RL
USAD8 RO, R5 ; Subtracts bytes of R5 fromcorresponding byte in RO,
; adds the differences and wites to RO.

SAMA4E Series [DATASHEET 127
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.23 USADAS8
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of Rl
; adds differences, adds value of R6, wites to Rl
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO
: adds differences, adds value of R2 wites to R4.

128 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.24 USUB16 and USUB8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:
USUB16 Unsigned Subtract 16.
USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first
operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.
The USUBS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of Rl
and wites to corresponding hal fword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; Wwites to the corresponding byte in R4.

SAMA4E Series [DATASHEET 129
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions.

Table 11-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result
MLS Multiply and Subtract, 32-bit result
MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX

Signed Multiply Accumulate Dual

SMLAL

Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWIBIT] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULIB,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

uDIVv Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 x 32 + 32 + 32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32 x 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 x 32), 64-bit result

130 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

11.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{ S}{cond} {Rd,} Rn
MLA{ cond} Rd, Rn, Rm
M.S{cond} Rd, Rn, Rm

Rm; Miltiply
Ra ; Miultiply with accunul ate
Ra ; Miultiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in
Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and
places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MJL R10, R2, RS ; Multiply, RLO = R2 x RS
M_A R10, R2, R1, R5 ; Multiply with accunulate, R1I0 = (R2 x Rl) + RS
MILS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MIULLT R2, R3, R2 ; Conditionally multiply, RR = R3 x R2
M.S R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

SAMA4E Series [DATASHEET 131
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.
Restrictions
In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, wites the top 32 bits to R4
; and the bottom 32 bits to RO
UMAAL R3, R6, R2, RY ; Miltiplies R2 and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, Rl, R3, R5 ; Miltiplies R5 and R3, adds R1: R2, wites to Rl: R2.
132 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{ XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm Ra

where:
op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.
If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation
The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No
overflow can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

SAMA4E Series [DATASHEET 133
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples
SMLABB R5, ; Multiplies bottom hal fwords of R6 and R4, adds
: RlL and wites to RS
; Multiplies top hal fword of R6 with bottom hal fword
; of R4, adds R1 and wites to RS
; Multiplies top hal fwords of R6 and R4, adds
: Rl and wites the sumto R5
; Multiplies bottomhal fword of R6 with top hal fword
; of R4, adds R1L and wites to R5
, R2 ; Multiplies bottomhal fword of R4 with top hal fword of
; R3, adds R2 and wites to R4
SMLAWB R10, R2, R5, R3 ; Miltiplies R2 with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10
SMAW R10, R2, R1, R5 ; Miltiplies R2 with top hal fword of Rl, adds R5
; and wites top 32-bits to R10.

SMLATB RS,

:
R R R R

R6
R6
SMLATT R5, R6, R4,
SMLABT R5, R6

R3

SMLABT R4,

134 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.4 SMLAD

Signed Multiply Accumulate Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm Ra ;

where:

op

cond
Rd
Rn
Rm
Ra

Operation

is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.

X specifies which halfword of the source register Rn is used as the multiply
operand.

If X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.

is an optional condition code, see “Conditional Execution” .

is the destination register.

is the first operand register holding the values to be multiplied.
the second operand register.

is the accumulate value.

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the
bottom signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and
the bottom signed halfword values in Rn with the top signed halfword of Rm.

Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SMLAD RI10, R2, R, R5 ; Multiplies two halfword values in R2 with

; corresponding hal fwords in Rl, adds R5 and
; wites to R10

SMLALDX RO, R2, R4, R6 ; Miultiplies top halfword of R2 with bottom

Atmel

; halfword of R4, nultiplies bottomhal fword of R2
; with top halfword of R4, adds R6 and wites to
;. RO.

SAMA4E Series [DATASHEET] 135

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate
Long Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
op{ XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdH , Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).
X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:
If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.
If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.
SMLALD Signed Multiply Accumulate Long Dual.
SMLALDX Signed Multiply Accumulate Long Dual Reversed.
If the X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The non-specified halfwords of the source registers are ignored.
The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement
signed 16-bit integers. These instructions:
e If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the
bottom signed halfword values of Rn with the bottom signed halfword of Rm.
e Orif X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and
the bottom signed halfword values of Rn with the top signed halfword of Rm.

136 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit

product.

e Write the 64-bit product in RdLo and RdHi.

Restrictions
In these instructions:

e Do notuse SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4, R5, R3, R8
SMLALBT R2, R1, R6, R7
SMLALTB R2, R1, R6, RY

SMLALD R6, R8, R5, Rl

SMLALDX R6, R8, R5, R1

Atmel

Miltiplies R3 and R8, adds R5: R4 and wites to
R5: R4

Mul tiplies bottomhal fword of R6 with top

hal fword of R7, sign extends to 32-bit, adds
R1:R2 and wites to RL: R2

Mil tiplies top halfword of R6 with bottom

hal fword of R7,sign extends to 32-bit, adds Rl:R2
and wites to RL: R2

Multiplies top halfwords in R5 and RL and bottom
hal fwords of R5 and R1l, adds R8:R6 and wites to
R8: R6

Miltiplies top halfword in R5 with bottom

hal fword of R1, and bottom hal fword of R5 with
top hal fword of Rl, adds R8:R6 and writes to

R8: R6.

SAMA4E Series [DATASHEET] 137

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.6

138

SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual
Syntax
op{X}{cond} Rd, Rn, Rm Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:
e Optionally rotates the halfwords of the second operand.
Performs two signed 16 x 16-bit halfword multiplications.
Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples
SM.SD RO,
SMLSDX R1,
SMLSLD R3,
SMLSLDX R3,
Atmel

R4,

R7

R7

Mil tiplies bottomhal fword of R4 with bottom

hal fword of R5, nultiplies top hal fword of R4
with top hal fword of R5, subtracts second from
first, adds R6, wites to RO

Mil tiplies bottomhal fword of R3 with top

hal fword of R2, nultiplies top hal fword of R3
with bottom hal fword of R2, subtracts second from
first, adds RO, wites to RL

Mil tiplies bottomhal fword of R6 with bottom

hal fword of R2, nultiplies top hal fword of R6
with top halfword of R2, subtracts second from
first, adds R6:R3, wites to R6:R3

Mul tiplies bottomhal fword of R6 with top

hal fword of R2, nultiplies top hal fword of R6
with bottom hal fword of R2, subtracts second from
first, adds R6:R3, wites to R6: R3.

SAMA4E Series [DATASHEET] 139

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, R, Rm Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Adds the value of Ra to the signed extracted value.

e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLS instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

140 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples

SWLA RO, R4, R5, R6 ; Miltiplies R4 and R5, extracts top 32 bits, adds
; R6, truncates and wites to RO

SMWLAR R6, R2, Rl, R4 ; Miltiplies R2 and Rl, extracts top 32 bits, adds
; R4, rounds and wites to R6

SMMLSR R3, R6, R2, R7 ; Miltiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and wites to R3

SMMLS R4, R5, R3, RB ; Miltiplies R56 and R3, extracts top 32 bits,

; subtracts R8, truncates and wites to R4.

SAMA4E Series [DATASHEET 141
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The
SMMUL instruction:

e Multiplies the values from Rn and Rm.
e Optionally rounds the result, otherwise truncates the result.
e Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:
e do not use SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Miltiplies R4 and R5, truncates top 32 bits
; and wites to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and wites to R6.

142 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm

where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed
integers. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

SAMA4E Series [DATASHEET 143
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples

SMUAD RO, R4, R5 ; Miltiplies bottomhal fword of R4 with the bottom
; halfword of R5, adds nultiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword
; of R4, adds multiplication of top hal fword of R7
: with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottomhalfword of R4 with bottom hal fword
; of R6, subtracts nmultiplication of top halfword of R6
; Wth top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhal fword of RS with top hal fword of
; R3, subtracts nultiplication of top hal fwrd of R5
: with bottomhal fword of R3, wites to R4.

144 SAMAE Series [DATASHEET] /ltmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{ XY}{cond} Rd, Rn, Rm

op{Y}{cond} Rd. Rn, Rm
For SMULXY only:
op is one of;

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW({Y} Signed Multiply (word by halfword).
Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed
16-bit integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; top halfword of R5, nultiplies results and
; wites to RO
SMULBB RO, R4, R5 ; Miltiplies the bottomhal fword of R4 with the
; bottom hal fword of R5, nultiplies results and
; wites to RO

SMULTT RO, R4, R5 ; Miltiplies the top halfword of R4 with the top
; halfword of R5, nultiplies results and wites
; to RO

SMULTB RO, R4, R5 ; Miltiplies the top halfword of R4 with the

SAMA4E Series [DATASHEET 145
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

; bottom hal fword of R5, nultiplies results and
; and wites to RO

SMULWI R4, R5, R3 ; Miltiplies R5 with the top hal fword of R3,
; extracts top 32 bits and wites to R4
SMULV\B R4, R5, R3 ; Miltiplies R5 with the bottom hal fword of R3,

; extracts top 32 bits and wites to R4.

146 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit

result.
Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:

UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accu
mulating value.

Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,
adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies
these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result
back to RdHi and RdLo.

Restrictions
In these instructions:
e Do notuse SP and do not use PC
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4, R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

SAMA4E Series [DATASHEET 147
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDI V{cond} {Rd,} Rn, Rm
uUDI V{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.
Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/Rl

148 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7 Saturating Instructions
The table below shows the saturating instructions.

Table 11-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUBS Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2"2, the result returned is -2"*
e If the value to be saturated is greater than 2"-1, the result returned is 2"*-1
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e Ifthe value to be saturated is less than 0, the result returned is 0
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the
MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

SAMA4E Series [DATASHEET 149
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.1 SSAT and USAT
Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.
Syntax
op{cond} Rd, #n, Rm{, shift #s}
where:
op is one of;
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1
to 32 for SSAT

n ranges from 0 to 31 for USAT.

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the
following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range

2t <x <2y,

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit val ue and
; wite it back to R7
USATNE RO, #7, RS ; Conditionally saturate value in R5 as an

; unsigned 7 bit value and wite it to RO.

150 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

11.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of;
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two signed 16-bit halfwords to the destination register.
The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom hi ghwords of R2
; as 9-bit values, wites to correspondi ng hal fword
; of R7

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; halfwords of R5 as 13-bit values, wites to
; correspondi ng hal fword of RO.

SAMA4E Series [DATASHEET 151
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a
signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed
range -2"1 < x < 2"1-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit
and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds hal fwords of R4 with correspondi ng hal fword of
; R2, saturates to 16 bits and wites to
; correspondi ng hal fword of R7

QADD8 R3, R1, R6 ; Adds bytes of Rl to the correspondi ng bytes of R6,
; saturates to 8 bits and wites to correspondi ng
; byte of R3

QSUB16 R4, R2, R3 ; Subtracts hal fwords of R3 from corresponding
; hal fword of R2, saturates to 16 bits, wites to
; correspondi ng hal fword of R4

QsuBs R4, R2, R5 ; Subtracts bytes of R5 fromthe correspondi ng byte
; in R2, saturates to 8 bits, wites to corresponding
; byte of R4.

152 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2'° < x < 215 -1,
where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
-2 <x <2 -1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215<x < 2% 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2'° < x < 2% _1,
where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top highword of R2 from bottom hal fword of
; R4, saturates to 16 bits and wites to bottom hal fword
; of R7

SAX RO, R3, R5 ; Subtracts bottomhalfword of R5 fromtop hal fword of
; R3, saturates to 16 bits, wites to top halfword of RO
; Adds bottom halfword of R3 to top hal fword of R5,
; saturates to 16 bits, wites to bottom hal fword of RO.

SAMA4E Series [DATASHEET 153
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.5

154

QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.
Syntax
op{cond} {Rd}, Rm Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.

e Adds the result of the doubling to the signed saturated value in the first operand.

e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.

e Subtracts the doubled value from the signed saturated value in the first operand.

e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range —

231 < x < 231 1. If saturation occurs in either operation, it sets the Q flag in the APSR.
Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, wites to R7
QDsuB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; fromR5, saturates to 32 bits, wites to RO.

SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

11.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:
1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0 <x< 2% -1, where x equals 16, to the top halfword of the destination register.
4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 216 — 1, where
X equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 21 — 1, where
x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 2® — 1, where x
equals 16, to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples
UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2,
; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4, saturates to 16 bits, wites to bottom hal fword of R7
UXBSAX RO, R3, R5 ; Subtracts bottom halfword of R5 fromtop hal fword of R3,
; saturates to 16 bits, wites to top hal fword of RO
; Adds bottom hal fword of R4 to top hal fword of R5
; saturates to 16 bits, wites to bottom hal fword of RO.

SAMA4E Series [DATASHEET 155
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the
destination register.
The UQADD16 instruction:
e Adds the respective top and bottom halfwords of the first and second operands.
e Saturates the result of the additions for each halfword in the destination register to the unsigned range
0<x< 2.1, where x is 16.
The UQADDS instruction:
e Adds each respective byte of the first and second operands.
e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 < x < 28-
1, where x is 8.
The UQSUBL16 instruction:
e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 < x < 216-1, where x
is 16.
The UQSUBS instructions:
e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.
e Saturates the results of the differences for each byte in the destination register to the unsigned range
0<x< 281, where x is 8.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the condition code flags.

156 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples
UQADDL6 R7,
UQADDS R4,
UQSUB16 R,
UQsUB8 R,

Atmel

&

Adds hal fwords in R4 to corresponding hal fword in R2,
saturates to 16 bits, wites to corresponding hal fword of R7
Adds bytes of R2 to corresponding byte of R5, saturates

to 8 bits, wites to correspondi ng bytes of R4

Subtracts hal fwords in RO from correspondi ng hal fword

in R3, saturates to 16 bits, wites to correspondi ng

hal fword in R6

Subtracts bytes in R6 from correspondi ng byte of R5,
saturates to 8 bhits, wites to corresponding byte of RI.

SAMA4E Series [DATASHEET] 157

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.8 Packing and Unpacking Instructions
The table below shows the instructions that operate on packing and unpacking data.

Table 11-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

158 SAMAJE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax
op{cond} {Rd}, Rn, Rm{, LSL #i mi}
op{cond} {Rd}, Rn, Rm{, ASR #i mi

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.
Restrictions
Rd must not be SP and must not be PC.
Condition Flags
This instruction does not change the flags.

Examples
PKHBT R3, R4, R5 LSL #0 ; Wites bottom hal fword of R4 to bottom hal fword of
; R3, wites top halfword of R5, unshifted, to top
; hal fword of R3
PKHTB R4, RO, R2 ASR #1 ; Wites R2 shifted right by 1 bit to bottom hal fword
; of R4, and wites top halfword of RO to top
: hal fword of R4.

SAMA4E Series [DATASHEET 159
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax
op{cond} {Rd,} Rm{, ROR #n}
op{cond} {Rd}, Rm{, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bhits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.

— SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.

— UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.
Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom hal fword of
; of result, sign extends to 32 bits and wites to R4

UXTB R3, R10 ; Extracts |owest byte of value in R10, zero extends, and
c wites to R3.

160 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax

op{cond} {Rd,}
op{cond} {Rd,}

where:

op

cond
Rd

Rn

Rm
ROR #n

Operation

Rn, Rm{, ROR #n}
Rn, Rm{, ROR #n}

is one of:
SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.

SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.

UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.

UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

is an optional condition code, see “Conditional Execution” .
is the destination register.

is the first operand register.

is the register holding the value to rotate and extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

SXTABL16 extracts bits[7:0] from Rm and sign extends to 16 bits,

and extracts bits [23:16] from Rm and sign extends to 16 bits.

UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,

and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in

Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

161

Examples
SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; halfword, sign extends to 32 bits, adds
; R8,and wites to R4
UXTAB R3, R4, R10 ; Extracts bottom byte of RLO and zero extends
; to 32 bits, adds R4, and wites to R3.

162 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields.

Table 11-24. Packing and Unpacking Instructions

Mnemonic Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

SAMA4E Series [DATASHEET 163
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #wi dth
BFI {cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of RAto O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of RO with
; bit O0to bit 11 from R2.

164 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #wi dth
UBFX{ cond} Rd, Rn, #lsb, #width
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.
Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) fromRl and sign
; extend to 32 bits and then wite the result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from Rl1l and zero
: extend to 32 bits and then wite the result to RS8.

SAMA4E Series [DATASHEET 165
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax
SXText end{cond} {Rd,} Rm{, ROR #n}
UXText end{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
— SXTB extracts bits[7:0] and sign extends to 32 bits.
— UXTB extracts bits[7:0] and zero extends to 32 bits.
— SXTH extracts bits[15:0] and sign extends to 32 bits.
— UXTH extracts bits[15:0] and zero extends to 32 bits.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; hal fword of the result and then sign extend to
; 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero
; extend it, and wite the result to R3.

166 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10 Branch and Control Instructions

The table below shows the branch and control instructions.

Table 11-25. Branch and Control Instructions

Mnemonic Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNz Compare and Branch if Non Zero
cBz Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword

SAMA4E Series [DATASHEET] 167

A t ' I IeL Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{ cond} | abel
BL{cond} | abel
BX{cond} Rm
BLX{ cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional Execution” .
label is a PC-relative expression. See “PC-relative Expressions” .
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to O.
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch
instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT" .

The table below shows the ranges for the various branch instructions.

Table 11-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MBto +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection” .

Restrictions

The restrictions are:
e Do not use PC in the BLX instruction
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to O
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer
branch range when it is inside an IT block.

168 SAMAJE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Condition Flags

These instructions do not change the flags.

Examples
B | oopA
BLE ng

B. W tar get
BEQ target
BEQ W target

BL funC
BX LR
BXNE RO
BLX RO

Atmel

Branch to | oopA

Conditionally branch to | abel ng

Branch to target within 16MB range

Conditionally branch to target

Conditionally branch to target within 1MB

Branch with link (Call) to function funC, return address
stored in LR

Return from function call

Conditionally branch to address stored in RO

Branch with |link and exchange (Call) to a address stored in RO.

SAMA4E Series [DATASHEET] 169

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10.2 CBZand CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, | abel
CBNZ Rn, | abel
where:
Rn is the register holding the operand.
label is the branch destination.
Operation
Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CwvP Rn, #0
BEQ | abel
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CwP Rn, #0
BNE | abel

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7
e The branch destination must be within 4 to 130 bytes after the instruction
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CcBz R5, target ; Forward branch if R5 is zero
CBNz RO, target ; Forward branch if RO is not zero

170 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10.3 IT
If-Then condition instruction.
Syntax
| T{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

— ADDPC, PC,Rm
— MOV PC,Rm
— B, BL,BX, BLX
— Any LDM, LDR, or POP instruction that writes to the PC
— TBBand TBH
e Do not branch to any instruction inside an IT block, except when returning from an exception handler

SAMA4E Series [DATASHEET 171
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

e All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside
an IT block but has a larger branch range if it is inside one

e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical
inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler
directives within them.

Condition Flags

This instruction does not change the flags.

Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, RL ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional nove
cwp RO, #9 ; Convert RO hex value (0 to 15) into ASCl I
; ("0 -T9, A -TFY)
I TE Gr ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert OxA ->'"A
ADDLE R1, RO, #48 ; Convert 0x0 -> '0'
1T GT ; 1T block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment Rl conditionally
ITTEE EQ ; Next 4 instructions are conditional
MOVEQ RO, RL ; Conditional nove
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE. W dl oop ; Branch instruction can only be used in the |ast
; instruction of an IT bl ock
1T NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT bl ock

172 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rn
TBH [Rn, Rm LSL #1]
where:
Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.
Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.
Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword
offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch
offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the
unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

e Rn must not be SP

e Rm must not be SP and must not be PC

e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 173
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples
ADR. W RO, BranchTabl e_Byte
TBB [RO, R1] ; RlLis the index, RO is the base address of the
; branch table
Casel
;an instruction sequence foll ows
Case2
;an instruction sequence foll ows
Case3

;an instruction sequence foll ows

BranchTabl e_Byte
DCB 0 ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; RLis the index, PCis used as base of the
; branch table
BranchTabl e_H

DCl ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCl ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCl ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA

;an instruction sequence follows

CaseB

;an instruction sequence follows

CaseC

;an instruction sequence follows

174 SAMAE Series [DATASHEET] /ltmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11 Floating-point Instructions
The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU”
for information about enabling the floating-point unit.

Table 11-27. Floating-point Instructions

Mnemonic | Description
VABS Floating-point Absolute
VADD Floating-point Add
VCMP Compare two floating-point registers, or one floating-point register and zero
VCMPE Compa_re two floating-point registers, or one floating-point register and zero with Invalid
Operation check
VCVT Convert between floating-point and integer
VCVT Convert between floating-point and fixed point
VCVTR Convert between floating-point and integer with rounding
VCVTB Converts half-precision value to single-precision
VCVTT Converts single-precision register to half-precision
VDIV Floating-point Divide
VEMA Floating-point Fused Multiply Accumulate
VENMA Floating-point Fused Negate Multiply Accumulate
VEMS Floating-point Fused Multiply Subtract
VFNMS Floating-point Fused Negate Multiply Subtract
VLDM Load Multiple extension registers
VLDR Loads an extension register from memory
VLMA Floating-point Multiply Accumulate
VLMS Floating-point Multiply Subtract
VMOV Floating-point Move Immediate
VMOV Floating-point Move Register
VMOV Copy ARM core register to single precision
VMOV Copy 2 ARM core registers to 2 single precision
VMOV Copies between ARM core register to scalar
VMOV Copies between Scalar to ARM core register
VMRS Move to ARM core register from floating-point System Register
VMSR Move to floating-point System Register from ARM Core register
VMUL Multiply floating-point
VNEG Floating-point negate
VNMLA Floating-point multiply and add
VNMLS Floating-point multiply and subtract
VNMUL Floating-point multiply
VPOP Pop extension registers
/ItmeL SAMAE Series [DATASHEET)] 175

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 11-27. Floating-point Instructions (Continued)

Mnemonic | Description
VPUSH Push extension registers
VSQRT Floating-point square root
VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract
176 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.1 VABS
Floating-point Absolute.

Syntax
VABS{ cond}. F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd, Sm are the destination floating-point value and the operand floating-point value.
Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

The floating-point instruction clears the sign bit.

Examples
VABS. F32 S4, S6

SAMA4E Series [DATASHEET 177
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.2 VADD
Floating-point Add

Syntax
VADD{ cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd, is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

This instruction does not change the flags.

Examples
VADD. F32 S4, S6, S7

178 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.3 VCMP, VCMPE
Compares two floating-point registers, or one floating-point register and zero.

Syntax
VCWP{ E} {cond}. F32 Sd, Sm
VCWP{ E} {cond}. F32 Sd, #0.0

where:

cond is an optional condition code, see “Conditional Execution” .

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:
1. Compares:
— Two floating-point registers.
— One floating-point register and zero.
2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises
an Invalid Operation exception if either operand is a signaling NaN.

Condition Flags
When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a

wn

subsequent VMRS instruction, see *” .

Examples
VCMP. F32 4, #0.0
VCWVP. F32 S4, S2

SAMA4E Series [DATASHEET 179
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.4 VCVT, VCVTR between Floating-point and Integer
Converts a value in a register from floating-point to a 32-bit integer.

Syntax
VCVT{R}{cond}. Tm F32 Sd, Sm
VCVT{cond}. F32. Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR.
If R is omitted. the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution” .

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:
1. Either
— Converts a value in a register from floating-point value to a 32-bit integer.
— Converts from a 32-bit integer to floating-point value.
2. Places the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally
use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

180 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.5 VCVT between Floating-point and Fixed-point
Converts a value in a register from floating-point to and from fixed-point.

Syntax
VCVT{cond}. Td. F32 Sd, Sd, #fbits
VCVT{cond}. F32. Td Sd, Sd, #fbits

where:
cond is an optional condition code, see “Conditional Execution” .
Td is the data type for the fixed-point number. It must be one of:
S16 signed 16-bit value.
Ul6 unsigned 16-bit value.
S32 signed 32-bit value.
U32 unsigned 32-bit value.
Sd is the destination register and the operand register.
fbits is the number of fraction bits in the fixed-point number:
If Td is S16 or U16, fbits must be in the range 0-16.
If Td is S32 or U32, fbits must be in the range 1-32.
Operation

These instructions:
1. Either
— Converts a value in a register from floating-point to fixed-point.
— Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-hit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.
Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 181
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.6 VCVTB, VCVTT
Converts between a half-precision value and a single-precision value.

Syntax
VCVT{y}{cond}. F32. F16 Sd, Sm
VCVT{y}{cond}. F16. F32 Sd, Sm

where:

y Specifies which half of the operand register Sm or destination register Sd is used for the
operand or destination:
- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If y is T, then the top half, bits [31:16], of Sm or Sd is used.

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sm is the operand register.

Operation

This instruction with the.F16.32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-
precision.

2. Writes the result to a single-precision register.
This instruction with the.F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the
target register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

182 SAMAJE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.7 VDIV
Divides floating-point values.

Syntax
VDI V{cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.
Sn, Sm are the operand registers.
Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 183
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

Syntax
VFMA{ cond}. F32 {Sd,} Sn, Sm
VFM5{ cond}. F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:
1. Negates the first operand register.
2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.
4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

184 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.9 VFENMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax
VFNMA{ cond}. F32 {Sd,} Sn, Sm
VFNM3{ cond}. F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFNMA instruction:
1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.
The VENMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 185
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.10 VLDM
Floating-point Load Multiple

Syntax
VLDM node} {cond}{. si ze} Rn{!}, Ilist

where:

mode is the addressing mode:
- 1A Increment After. The consecutive addresses start at the address speci
fied in Rn.
- DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.

Rn is the base register. The SP can be used

! is the command to the instruction to write a modified value back to Rn. This is
required if mode == DB, and is optional if mode == IA.

list is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

Operation

This instruction loads:
e Multiple extension registers from consecutive memory locations using an address from an ARM core register
as the base address.
Restrictions
The restrictions are:
e If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

e For the base address, the SP can be used.
In the ARM instruction set, if | is not specified the PC can be used.

e list must contain at least one register. If it contains doubleword registers, it must not contain more than 16
registers.

e If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base
register specification.

Condition Flags
These instructions do not change the flags.

186 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.11 VLDR
Loads a single extension register from memory

Syntax
VLDR{cond}{. 64} Dd, [Rn{# mmi]
VLDR{ cond}{. 64} Dd, | abel
VLDR{cond}{. 64} Dd, [PC, #i mi]
VLDR{cond}{.32} Sd, [Rn {, #i mmi]
VLDR{ cond}{. 32} Sd, | abel
VLDR{cond}{. 32} Sd, [PC, #i mmi

where:
cond is an optional condition code, see “Conditional Execution” .
64, 32 are the optional data size specifiers.
Dd is the destination register for a doubleword load.
Sd is the destination register for a singleword load.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address.
Permitted address values are multiples of 4 in the range 0 to 1020.
label is the label of the literal data item to be loaded.
Operation

This instruction:

e Loads a single extension register from memory, using a base address from an ARM core register, with an
optional offset.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 187
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.12 VLMA, VLMS
Multiplies two floating-point values, and accumulates or subtracts the results.

Syntax
VLMA{ cond}. F32 Sd, Sn, Sm
VLM5{ cond}. F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:
1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.
The floating-point Multiply Subtract instruction:
1. Multiplies two floating-point values.
2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

188 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.13 VMOV Immediate
Move floating-point Immediate

Syntax
VMOV{ cond}. F32 Sd, #imm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the branch destination.
imm is a floating-point constant.
Operation

This instruction copies a constant value to a floating-point register.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 189
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.14 VMOV Register
Copies the contents of one register to another.

Syntax
VMOV{ cond}. F64 Dd, Dm
VMOV{ cond}. F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Dd is the destination register, for a doubleword operation.

Dm is the source register, for a doubleword operation.

Sd is the destination register, for a singleword operation.

Sm is the source register, for a singleword operation.
Operation

This instruction copies the contents of one floating-point register to another.
Restrictions

There are no restrictions

Condition Flags

These instructions do not change the flags.

190 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.15 VMOV Scalar to ARM Core Register
Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax
VMOV{ cond} Rt, Dn[Xx]

where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the destination ARM core register.
Dn is the 64-bit doubleword register.
X Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register

- If x is 1, use upper half of doubleword register.
Operation

This instruction transfers:
e One word from the upper or lower half of a doubleword floating-point register to an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 191
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.16 VMOV ARM Core Register to Single Precision
Transfers a single-precision register to and from an ARM core register.

Syntax
VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn
where:
cond is an optional condition code, see “Conditional Execution” .
Sn is the single-precision floating-point register.
Rt is the ARM core register.
Operation

This instruction transfers:
e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

192 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.17 VMOV Two ARM Core Registers to Two Single Precision
Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax
VMMV{cond} Sm Snml, R, Rt2
VMM{cond} Rt, Rt2, Sm Sm

where:
cond is an optional condition code, see “Conditional Execution” .
Sm is the first single-precision register.
Sml is the second single-precision register.
This is the next single-precision register after Sm.
Rt is the ARM core register that Sm is transferred to or from.
Rt2 is the The ARM core register that Sm1 is transferred to or from.
Operation

This instruction transfers:
e The contents of two consecutively numbered single-precision registers to two ARM core registers.
e The contents of two ARM core registers to a pair of single-precision registers.
Restrictions
e The restrictions are:
e The floating-point registers must be contiguous, one after the other.
e The ARM core registers do not have to be contiguous.
e Rtcannot be PC or SP.

Condition Flags
These instructions do not change the flags.

SAMA4E Series [DATASHEET 193
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.18 VMOV ARM Core Register to Scalar
Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV cond}{. 32} Dd[x], Rt
where:
cond is an optional condition code, see “Conditional Execution” .
32 is an optional data size specifier.
Dd[x] is the destination, where [x] defines which half of the doubleword is transferred,
as follows:
If x is 0, the lower half is extracted
If x is 1, the upper half is extracted.
Rt is the source ARM core register.
Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM
core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

194 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.

Syntax
VMRS{cond} Rt, FPSCR
VMRS{ cond} APSR nzcv, FPSCR

where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the destination ARM core register. This register can be RO-R14.

APSR_nzcv Transfer floating-point flags to the APSR flags.
Operation

This instruction performs one of the following actions:
e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions optionally change the flags: N, Z, C, V

SAMA4E Series [DATASHEET 195
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.20 VMSR

Move to floating-point System Register from ARM Core register.

Syntax
VMBR{ cond} FPSCR Rt
where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control
Register” for more information.

Restrictions

The restrictions are:
e Rt cannot be PC or SP.

Condition Flags
This instruction updates the FPSCR.

196 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.21 VMUL
Floating-point Multiply.

Syntax
VMJL{cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:

1. Multiplies two floating-point values.
2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 197
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.22 VNEG
Floating-point Negate.

Syntax
VNEE cond}. F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:

1. Negates a floating-point value.
2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

198 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.

Syntax
VNMLA{ cond}. F32 Sd, Sn, Sm
VNMLS{ cond}. F32 Sd, Sn, Sm
VNMUL{ cond}. F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.
The VNMLS instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:

1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 199
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.24 VPOP
Floating-point extension register Pop.

Syntax
VPOP{ cond}{. si ze} Iist

where:

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.
Restrictions

The list must contain at least one register, and not more than sixteen registers.
Condition Flags

These instructions do not change the flags.

200 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.25 VPUSH
Floating-point extension register Push.

Syntax
VPUSH{ cond}{. si ze} |ist
where:
cond is an optional condition code, see “Conditional Execution” .
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
list is a list of the extension registers to be stored, as a list of consecutively num
bered doubleword or singleword registers, separated by commas and sur
rounded by brackets.
Operation

This instruction:
e Stores multiple consecutive extension registers to the stack.

Restrictions

The restrictions are:
e list must contain at least one register, and not more than sixteen.

Condition Flags
These instructions do not change the flags.

SAMA4E Series [DATASHEET 201
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.26 VSQRT
Floating-point Square Root.

Syntax
VSQRT{ cond}. F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:
e Calculates the square root of the value in a floating-point register.
e Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

202 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.27 VSTM
Floating-point Store Multiple.

Syntax
VSTM node} {cond}{. si ze} Rn{!}, Ilist

where:

mode is the addressing mode:
- 1A Increment After. The consecutive addresses start at the address speci
fied in Rn.
This is the default and can be omitted.
- DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

Rn is the base register. The SP can be used

! is the function that causes the instruction to write a modified value back to Rn.
Required if mode == DB.

list is a list of the extension registers to be stored, as a list of consecutively num
bered doubleword or singleword registers, separated by commas and sur
rounded by brackets.

Operation

This instruction:

e Stores multiple extension registers to consecutive memory locations using a base address from an ARM
core register.

Restrictions

The restrictions are:

e list must contain at least one register.
If it contains doubleword registers it must not contain more than 16 registers.

e Use of the PC as Rn is deprecated.
Condition Flags
These instructions do not change the flags.

SAMA4E Series [DATASHEET 203
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.28 VSTR
Floating-point Store.

Syntax
VSTR{cond}{.32} Sd, [Rn{, #imi]
VSTR{cond}{. 64} Dd, [Rn{, #i mi]

where

cond is an optional condition code, see “Conditional Execution” .

32, 64 are the optional data size specifiers.

Sd is the source register for a singleword store.

Dd is the source register for a doubleword store.

Rn is the base register. The SP can be used.

imm is the + or - immediate offset used to form the address. Values are multiples of 4
in the range 0-1020. imm can be omitted, meaning an offset of +0.

Operation

This instruction:

e Stores a single extension register to memory, using an address from an ARM core register, with an optional
offset, defined in imm.

Restrictions

The restrictions are:
e The use of PC for Rn is deprecated.

Condition Flags
These instructions do not change the flags.

204 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.29 VSUB
Floating-point Subtract.

Syntax
VSUB{ cond}. F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point value.
Operation

This instruction:
1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMA4E Series [DATASHEET 205
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12 Miscellaneous Instructions

The table below shows the remaining Cortex-M4 instructions.

Table 11-28. Miscellaneous Instructions

Mnemonic Description
BKPT Breakpoint
CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier
DSB Data Synchronization Barrier
ISB Instruction Synchronization Barrier
MRS Move from special register to register
MSR Move from register to special register
NOP No Operation
SEV Send Event
SsvC Supervisor Call
WFE Wait For Event
WFI Wait For Interrupt
206 SAMAE Series [DATASHEET] /ItmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.1 BKPT

Breakpoint.
Syntax
BKPT #i nm
where:
imm is an expression evaluating to an integer in the range 0—255 (8-bit value).
Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system
state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the
breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Examples

BKPT OxAB ; Breakpoint with i medi ate val ue set to OxAB (debugger can
; extract the imediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any purpose other
than Semi-hosting.

SAMA4E Series [DATASHEET 207
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.2 CPS
Change Processor State.

Syntax
CPSef fect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:
e Use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags
This instruction does not change the condition flags.

Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handl ers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRI MASK)

CPSIE f ; Enable interrupts and fault handl ers (cl ear FAULTMASK)

208 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.3 DMB
Data Memory Barrier.

Syntax
DVB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,
before the DMB instruction are completed before any explicit memory accesses that appear, in program order,
after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access
memory.

Condition Flags
This instruction does not change the flags.

Examples
DVMB ; Data Menory Barrier

SAMA4E Series [DATASHEET 209
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.4 DSB
Data Synchronization Barrier.

Syntax
DSB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program
order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory
accesses before it complete.

Condition Flags
This instruction does not change the flags.

Examples
DSB ; Data Synchronisation Barrier

210 SAMA4E Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.125 ISB

Instruction Synchronization Barrier.

Syntax
| SB{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronisation Barrier

SAMA4E Series [DATASHEET 211
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.126 MRS
Move the contents of a special register to a general-purpose register.

Syntax
MRS{ cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to
clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including
relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These
operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.
Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See "MSR”.

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRI MASK value and wite it to RO

212 SAMAE Series [DATASHEET] /ltmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax
MSR{ cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the
APSR. See “Application Program Status Register” . Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is O
Rn is non-zero and less than the current BASEPRI value.

See “MRS”.

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, Rl ; Read Rl value and wite it to the CONTROL register

SAMA4E Series [DATASHEET 213
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.8 NOP
No Operation.

Syntax
NOP{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags
This instruction does not change the flags.

Examples
NOP ; No operation

214 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.129 SEV

Send Event.
Syntax
SEV{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It
also sets the local event register to 1, see “Power Management” .

Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

SAMA4E Series [DATASHEET 215
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.10 SVC
Supervisor Call.

Syntax
SVC{ cond} #i mm
where:
cond is an optional condition code, see “Conditional Execution” .
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service
is being requested.

Condition Flags
This instruction does not change the flags.

Examples
SVC 0x32 ; Supervisor Call (SVC handler can extract the imediate val ue
; by locating it via the stacked PC)
216 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.11 WFE
Wait For Event.

Syntax
WFE{ cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

e An exception, unless masked by the exception mask registers or the current priority level

e An exception enters the Pending state, if SEVONPEND in the System Control Register is set
e A Debug Entry request, if Debug is enabled
[J

An event signaled by a peripheral or another processor in a multiprocessor system using the SEV
instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information, see “Power Management” .

Condition Flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

11.6.12.12 WFI
Wait for Interrupt.

Syntax
WFI { cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:
e An exception
e A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags
This instruction does not change the flags.

Examples
WFl ; Wait for interrupt

SAMA4E Series [DATASHEET 217
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.7 Cortex-M4 Core Peripherals

11.7.1 Peripherals

e Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low
latency interrupt processing. See Section 11.8 "Nested Vectored Interrupt Controller (NVIC)".

e System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system

implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 11.9 "System Control Block (SCB)".

e System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter. See Section 11.10 "System Timer (SysTick)”.

e Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different

memory regions. It provides up to eight different regions, and an optional predefined background region.
See Section 11.11 "Memory Protection Unit (MPU)”.

e Floating-point Unit (FPU)
The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-
point values. See Section 11.12 "Floating Point Unit (FPU)".

11.7.2 Address Map

The address map of the Private peripheral bus (PPB) is given in the following table.

Table 11-29. Core Peripheral Register Regions

Address Core Peripheral
O0xEOOOE008-0xEO00EOQOF System Control Block
OXEOOOE010-0xEOOOEOQ1F System Timer
OXEOOOE100-0xEOOOE4EF Nested Vectored Interrupt Controller
OXEOOOEDO00-0XEOOOED3F System control block
OXEOOOED90-0xEOOOEDBS Memory Protection Unit
OXEOOOEF00-OXEOOOEF03 Nested Vectored Interrupt Controller
OxXEOOOEF30-0xEOOOEF44 Floating-point Unit

In register descriptions:
e The required privilege gives the privilege level required to access the register, as follows:
— Privileged: Only privileged software can access the register.
— Unprivileged: Both unprivileged and privileged software can access the register.

218 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:

11.8.1

11.8.1.1

11.8.2

Atmel

Up to 47 interrupts

A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so
level 0 is the highest interrupt priority.

Level detection of interrupt signals

Dynamic reprioritization of interrupts

Grouping of priority values into group priority and subpriority fields
Interrupt tail-chaining

An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear
the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware
and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the
processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR
again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
The NVIC detects a rising edge on the interrupt signal

A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending
Registers”, or to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register” .

A pending interrupt remains pending until one of the following:

The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.
Then:

— For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to
inactive.

Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not
change. Otherwise, the state of the interrupt changes to inactive.

NVIC Design Hints and Tips

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from
taking that interrupt. Before programming SCB_VTOR to relocate the vector table, ensure that the vector table
entries of the new vector table are set up for fault handlers, NMI and all enabled exception like interrupts. For more
information, see the “Vector Table Offset Register” .

SAMA4E Series [DATASHEET] 219

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.2.1 NVIC Programming Hints

The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides
the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts
void __enable_irg(void) // Enable Interrupts
In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 11-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnablelRQ(IRQnN_t IRQN) Enable IRQnN

void NVIC_DisablelRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendinglRQ (IRQn_t IRQN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQnN) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.
To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-hit
integers, so that:
— The array ISERJ[0] to ISER[1] corresponds to the registers ISERO-ISER1
— The array ICER[0] to ICER[1] corresponds to the registers ICERO-ICER1
— The array ISPRJ[0] to ISPR[1] corresponds to the registers ISPRO-ISPR1
— The array ICPR[0] to ICPR[1] corresponds to the registers ICPRO-ICPR1
— The array IABRJ[0] to IABR[1] corresponds to the registers IABRO-IABR1
e The Interrupt Priority Registers (IPRO-IPR12) provide an 8-bit priority field for each interrupt and each
register holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 11-31
shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables
that have one bit per interrupt.

Table 11-31. Mapping of Interrupts

CMSIS Array Elements®
Interrupts | Set-enable Clear-enable Set-pending Clear-pending Active Bit
0-31 ISER[O] ICERI[0] ISPR[0] ICPRI[0] IABR[O]
32-47 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]
Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to the
ICERO.
220 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 11-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping
Offset Register Name Access Reset
OxEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read/Write 0x00000000
OXEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register 0 NVIC_ICERO Read/Write 0x00000000
OXEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000
0XEOO0E200 Interrupt Set-pending Register 0 NVIC_ISPRO Read/Write 0x00000000
OXEOOOE21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register 0 NVIC_ICPRO Read/Write 0x00000000
OXEOOOE29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000
OXEOOOE300 Interrupt Active Bit Register O NVIC_IABRO Read/Write 0x00000000
OXEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000
OXEOOOE400 Interrupt Priority Register O NVIC_IPRO Read/Write 0x00000000
O0XEOOOE42C Interrupt Priority Register 12 NVIC_IPR12 Read/Write 0x00000000
OxEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

221

11.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERX [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETENA |
23 22 21 20 19 18 17 16

| SETENA |
15 14 13 12 11 10 9 8

| SETENA |
7 6 5 4 3 2 1 0

| SETENA |

These registers enable interrupts and show which interrupts are enabled.

» SETENA: Interrupt Set-enable
Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If aninterrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates
the interrupt, regardless of its priority.

222 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERX [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRENA |
23 22 21 20 19 18 17 16

| CLRENA |
15 14 13 12 11 10 9 8

| CLRENA |
7 6 5 4 3 2 1 0

| CLRENA |

These registers disable interrupts, and show which interrupts are enabled.

* CLRENA: Interrupt Clear-enable
Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

SAMA4E Series [DATASHEET 223
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.

» SETPEND: Interrupt Set-pending
Write:

0: No effect.

1: Changes the interrupt state to pending.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Wiriting a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

224 SAMAE Series [DATASHEET] /ltmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRXx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.

* CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

SAMA4E Series [DATASHEET 225
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRXx [x=0..7]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.

» ACTIVE: Interrupt Active Flags
0: Interrupt is not active.

1: Interrupt is active.
Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

226 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..12]

Access: Read/Write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 11 10 9 8

| PRI1 |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPR12 registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible.
Each register holds four priority fields that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[46].

* PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

* PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

e PRIO: Priority (4m)

Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0—15. The lower the value, the greater the priority of the corresponding interrupt.
The processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

2. For more information about the IP[0] to IP[46] interrupt priority array, that provides the software view of the interrupt
priorities, see Table 11-30, “CMSIS Functions for NVIC Control”.

3. The corresponding IPR number n is given by n = m DIV 4.
4. The byte offset of the required Priority field in this register is m MOD 4.

SAMA4E Series [DATASHEET 227
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.7 Software Trigger Interrupt Register
Name: NVIC_STIR
Access: Write-only
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
- 1 - 1T - 1T - T =T =T = T ®wm]
7 6 5 4 3 2 1 0
| INTID |
Write to this register to generate an interrupt from the software.
e INTID: Interrupt ID
Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.
228 SAMAE Series [DATASHEET] /lt m eL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9

System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes

configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:
e Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned word accesses
e Forthe SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word

accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.
2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_ MMFAR
or SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault
might change the SCB_MMFAR or SCB_BFAR value.

SAMA4E Series [DATASHEET 229
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1 System Control Block (SCB) User Interface

Table 11-33. System Control Block (SCB) Register Mapping
Offset Register Name Access Reset
O0xEOOOE008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000
OxEOOOEDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
OXEOOOEDO4 Interrupt Control and State Register SCB_ICSR Read/Write® 0x00000000
OXEOOOEDO08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000
OXEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000
OXEOOOED10 System Control Register SCB_SCR Read/Write 0x00000000
OXEOOOED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200
OxXEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000
OXEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000
OXEOOOED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000
OXEOOOED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000
OxEOOOED28 Configurable Fault Status Register SCB_CFSR® Read/Write 0x00000000
OXEOOOED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000
OxEOOOED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown
OxEOOOED38 BusFault Address Register SCB_BFAR Read/Write Unknown

Notes: 1. See the register description for more information.

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 - 8 bits),
“BFSR: Bus Fault Status Subregister” (OXEOOOEDZ29 - 8 bits), “UFSR: Usage Fault Status Subregister” (OXEOOOED2A - 16

bits).

230 SAMAE Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Atmel

11.9.11 Auxiliary Control Register

Name: SCB_ACTLR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | - | — | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0

| — | - | — | - | - | DISFOLD | DISDEFWBUFl DISMCYCINT |

The SCB_ACTLR provides disable bits for the following processor functions:
« IT folding
» Write buffer use for accesses to the default memory map
« Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally
require modification.

¢ DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

* DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

« DISFOLD: Disable Folding

When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction.
This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in looping. If a task must
avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

 DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise
but decreases the performance, as any store to memory must complete before the processor can execute the next
instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

* DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt
latency of the processor, as any LDM or STM must complete before the processor can stack the current state and enter the
interrupt handler.

SAMA4E Series [DATASHEET 231
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.2 CPUID Base Register

Name: SCB_CPUID

Access: Read/Write
31 30 29 28 27 26 25 24

| Implementer |
23 22 21 20 19 18 17 16

| Variant Constant |
15 14 13 12 11 10 9 8

| PartNo |
7 6 5 4 3 2 1 0

| PartNo | Revision |

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

» Variant: Variant Number
It is the r value in the rnpn product revision identifier:
0x0: Revision 0.

» Constant: Reads as OxF
Reads as OxF.

e PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

* Revision: Revision Number
It is the p value in the rnpn product revision identifier:
0x0: Patch 0.

232 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read/Write
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-
pending bits for the PendSV and SysTick exceptions.

It indicates:
» The exception number of the exception being processed, and whether there are preempted active exceptions,
« The exception number of the highest priority pending exception, and whether any interrupts are pending.

« NMIPENDSET: NMI Set-pending

Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMl is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a
write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if
the NMI signal is reasserted while the processor is executing that handler.

« PENDSVSET: PendSV Set-pending

Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing a 1 to this bit is the only way to set the PendSV exception state to pending.

SAMA4E Series [DATASHEET 233
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 PENDSVCLR: PendSV Clear-pending
Write:
0: No effect.

1: Removes the pending state from the PendSV exception.

 PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.
Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

» PENDSTCLR: SysTick Exception Clear-pending

Write:

0: No effect.

1: Removes the pending state from the SysTick exception.
This bit is Write-only. On a register read, its value is Unknown.

* ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
0: Interrupt not pending.
1: Interrupt pending.

» VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.
Nonzero: The exception humber of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the
PRIMASK register.

« RETTOBASE: Preempted Active Exceptions Present or Not
0: There are preempted active exceptions to execute.
1: There are no active exceptions, or the currently-executing exception is the only active exception.

¢ VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt
Program Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-
Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .
Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:

- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit
- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

234 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.14 Vector Table Offset Register

Name: SCB_VTOR

Access: Read/Write
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

[TBLOFF | - | - | - | - | - | - | - |

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

* TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the next
statement to give the information required for your implementation; the statement reminds the user of how to determine the
alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the
alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the alignment must be on a 64-word
boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

SAMA4E Series [DATASHEET 235
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.15 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS | - | - | - | - | PRIGROUP |
7 6 5 4 3 2 1 0

| _ | _ | — | - | — | SYSRESETREQ |VECTCLRACTIVE| VECTRESET |

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. To write to this register, write OX5FA to the VECTKEY field, otherwise the processor ignores the
write.

 VECTKEYSTAT: Register Key (Read)
Reads as 0xFAO05.

* VECTKEY: Register Key (Write)
Writes Ox5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
O: Little-endian.

1: Big-endian.

* PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the
PRIGROUP value controls this split.

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP Binary Point® Group Priority Bits | Subpriority Bits Group Priorities Subpriorities
0b000 DXXXXXXX.Y [7:1] None 128 2
0b001 bXXXXXX.yy [7:2] [4:0] 64 4
0b010 bxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
Ob110 bx.yyyyyyy [7] [6:0] 2 128
Ob111 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

236 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

e SYSRESETREQ: System Reset Request
0: No system reset request.
1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

* VECTCLRACTIVE: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

 VECTRESET: Reserved for Debug use
This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

SAMA4E Series [DATASHEET 237
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.6 System Control Register

Name: SCB_SCR

Access: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| SEVONPEND | - | SLEEPDEEP |SLEEPONEXIT| - |

 SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the proces-
sor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

» SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep.

1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

238 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.7 Configuration and Control Register

Name: SCB_CCR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - | - | - | - |
15 14 13 12 1 10 9 8

| - | - | - | - | - | - [STKALIGN | BFHFNMIGN |
7 6 5 4 3 2 1 0
- - - DIV.0_TRP |UNALIGN_TRP - USERSETMPENDNONBAS/ETHRDE

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to
the NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

» STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:
0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the
exception, it uses this stacked bit to restore the correct stack alignment.

 BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1. Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

» DIV_O_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:
0: Do not trap divide by 0.

1: Trap divide by O.

When this bit is set to 0, a divide by zero returns a quotient of 0.

e UNALIGN_TRP: Unaligned Access Trap

Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1. Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

SAMA4E Series [DATASHEET 239
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

¢ USERSETMPEND: Unprivileged Software Access

Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register” :
0: Disable.

1: Enable.

¢ NONBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:
0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception
Return” .

240 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.8 System Handler Priority Registers

The SCB_SHPR1-SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable pri-

ority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 11-34. System Fault Handler Priority Fields

Handler Field Register Description

Memory management fault (MemManage) PRI_4

Bus fault (BusFault) PRI_5 System Handler Priority Register 1

Usage fault (UsageFault) PRI_6

Svcall PRI_11 System Handler Priority Register 2

PendSV PRI_14 . .
System Handler Priority Register 3

SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and

ignore writes.

Atmel

SAMA4E Series [DATASHEET] 241

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

* PRIL_6: Priority
Priority of system handler 6, UsageFault.

* PRIL_5: Priority
Priority of system handler 5, BusFault.

e PRI_4: Priority
Priority of system handler 4, MemManage.

242 SAMAE Series [DATASHEET] /ltmeL

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_11 |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - |
* PRI_11: Priority
Priority of system handler 11, SVCall.

SAMA4E Series [DATASHEET 243
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - |
* PRI_15: Priority
Priority of system handler 15, SysTick exception.

* PRI_14: Priority
Priority of system handler 14, PendSV.

244 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR

Access: Read/Write
31 30 29 28 27 26 25 24

| - | - | - | - | - | - | - | - |
23 22 21 20 19 18 17 16

| - | - | - | - | - [USGFAULTENA|BUSFAULTENAMEMFAULTENA
15 14 13 12 11 10 9 8

SVCALLPENDED BUSFAEE'-)TPEND MEMFAEE%TPEND USGFAE’E';TPEND SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0

[SVCALLACT | - | - | - [USGFAULTACT] - [BUSFAULTACT [MEMFAULTACT|

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault,
and SVC exceptions; it also indicates the active status of the system handlers.

» USGFAULTENA: Usage Fault Enable
0: Disables the exception.
1: Enables the exception.

» BUSFAULTENA: Bus Fault Enable
0: Disables the exception.
1: Enables the exception.

* MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.
1: Enables the exception.

» SVCALLPENDED: SVC Call Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e BUSFAULTPENDED: Bus Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

SAMA4E Series [DATASHEET 245
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

+ MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

e SYSTICKACT: SysTick Exception Active
Read:
0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content
can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently
restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write
procedure to ensure that only the required bit is changed.

« PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

* MONITORACT: Debug Monitor Active
0: Debug monitor is not active.
1: Debug monitor is active.

« SVCALLACT: SVC Call Active
0: SVC call is not active.
1: SVC call is active.

 USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.
1: Usage fault exception is active.

 BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.
1: Bus fault exception is active.

« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

246 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to
the active bits to perform a context switch that changes the current exception type.

SAMA4E Series [DATASHEET 247
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read/Write
31 30 29 28 27 26 25 24

| —_ | — | — | - | - | - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | - | - | - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFARVALID | - | LSPERR | STKERR | UNSTKERR |IMPRECISERR| PRECISERR | IBUSERR |
7 6 5 4 3 2 1 0

[MMARVALID | - | mLsPERR | MSTKERR [MUNSTKERR | - [DACCVIOL [TACCVIOL |

* IACCVIOL: Instruction Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not
written a fault address to the SCB_MMFAR.

» DACCVIOL: Data Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded
the SCB_MMFAR with the address of the attempted access.

e MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No unstacking fault.

1. Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-
sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a
fault address to the SCB_MMFAR.

» MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to SCB_ MMFAR.

« MLSPERR: MemManage During Lazy State Preservation

248 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

This is part of “MMFSR: Memory Management Fault Status Subregister” .
0: No MemManage fault occurred during the floating-point lazy state preservation.
1: A MemManage fault occurred during the floating-point lazy state preservation.

» MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_ MMFAR
value has been overwritten.

* IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .
0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

» PRECISERR: Precise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister” .
0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

e IMPRECISERR: Imprecise Data Bus Error
This is part of “BFSR: Bus Fault Status Subregister” .
0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
that both this bit and one of the precise fault status bits are set to 1.

 UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

SAMA4E Series [DATASHEET 249
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still
present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write
a fault address to the BFAR.

* STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-
rect. The processor does not write a fault address to the SCB_BFAR.

* LSPERR: Bus Error During Lazy Floating-point State Preservation
This is part of “BFSR: Bus Fault Status Subregister” .

0: No bus fault occurred during floating-point lazy state preservation

1: A bus fault occurred during floating-point lazy state preservation.

 BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister” .

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a
memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This
prevents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

» UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.
An undefined instruction is an instruction that the processor cannot decode.

e INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal
use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

250 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

* INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:
0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-
gal load of the PC.

» NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:
0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

* UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and
Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of
UNALIGN_TRP.

« DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed
the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configura-
tion and Control Register” .

SAMA4E Series [DATASHEET 251
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read/Write
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
11.9.1.13.

* BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See hitfield [14..8] description in Section
11.9.1.13.

» UFSR: Usage Fault Status Subregister

The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 11.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by wrting a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The
user can access the SCB_CFSR or its subregisters as follows:

» Access complete SCB_CFSR with a word access to 0OxEOOOED28
» Access MMFSR with a byte access to OXxEOOOED28

» Access MMFSR and BFSR with a halfword access to OXEOOOED28
» Access BFSR with a byte access to OXEOOOED29

» Access UFSR with a halfword access to OXEOOOED2A.

252 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read/Write
31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | - | - | - | — | - | — |

23 22 21 20 19 18 17 16

. - r - r -+ -+ -1 - ¢ - [- |
15 14 13 12 11 10 9 8

. - r - r -+ -+ - 1 - ¢ - [- |
7 6 5 4 3 2 1 0

. - r - r - - - [- [veerms | - |

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear.
This means that bits in the register read normally, but wrting a 1 to any bit clears that bit to 0.

 DEBUGEVT: Reserved for Debug Use
When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

» FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either
because of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

* VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:
0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is setto 1 is
cleared to 0 only by wrting a 1 to that bit, or by a reset.

SAMA4E Series [DATASHEET 253
Atmel []

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_MMFAR contains the address of the location that generated a memory management fault.

 ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated
the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction
can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is valid. See
“MMFSR: Memory Management Fault Status Subregister” .

254 SAMAE Series [DATASHEET] Atmel

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read/Write
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The SCB_BFAR contains the address of the location that generated a bus fault.

» ADDRESS: Bus Fault Generation Location Address
When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the

bus fault.
Notes: 1.
2.

When an unaligned access faults, the address in the SCB_BFAR is the one requested by the instruction, even if it is not the

address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR is valid. See “BFSR: Bus Fault

Status Subregister” .

Atmel

SAMA4E Series [DATASHEET]

Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

255

11.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps
to) the value in the SYST_RVR on the next clock edge, then counts down on